Skip to main content

A Cellular Automaton Model for the Catalytic Oxidation of CO Including CO Desorption and Diffusion

Intermittent Oscillations in a Cellular Automaton Model for a Surface Reaction

  • Chapter
  • First Online:
  • 1176 Accesses

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

The oxidation of carbon monoxide (CO) on a catalyst surface is studied with a cellular automaton (CA) model previously introduced in [22]. We expand the model in order to include the effects of CO desorption and diffusion. Both processes are considered probabilistic with probabilities \(p_1\) and \(p_2\), respectively. In this chapter we will observe that CO desorption widens the range of the thermal relaxation parameter \(\gamma \) for which the reaction shows an oscillatory behavior. In the range (\(0.009< p_1 < 0.015\)) and near the CO poisoned state (\(0.30 \le \gamma < 0.35\)), the surface reaction shows intermittent oscillatory behaviors in which the regular quasiperiodic oscillations are interrupted by bursts of CO and O coverage. CO diffusion smooths that intermittent behavior with a reduction in the number of bursts and increases the time during which the reaction oscillates quasiperiodically.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    This section modifies with permission content from previous publications by the authors given in Refs. [9, 22], copyright by AIP, Ref. [10], copyright by APS and Ref. [21], copyright by Elsevier.

  2. 2.

    This section modifies with permission content from previous publications by the authors given in Refs. [9, 22], copyright by AIP, Ref. [10], copyright by APS and Ref. [21], copyright by Elsevier.

References

  1. Albano, E.V.: Monte Carlo simulation of a bimolecular reaction of the type A\(+(1/2)\) B\(_{2}\rightarrow {A}{B}\) -the influence of A-desorption on kinetic phase transitions. Appl. Phys. A 55(2), 226–230 (1992)

    Article  ADS  Google Scholar 

  2. Brosilow, B.J., Ziff, R.M.: Effects of a desorption on the first-order transition in the A-B\(_{2}\) reaction model. Phys. Rev. A 46(8), 4534–4538 (1992)

    Article  ADS  Google Scholar 

  3. Buendía, G.M., Machado, E., Rikvold, P.A.: Effect of CO desorption and coadsorption with O on the phase diagram of a Ziff–Gulari–Barshad model for the catalytic oxidation of CO. J. Chem. Phys. 131, 184704 (2009)

    Article  ADS  Google Scholar 

  4. Buendía, G.M., Rikvold, P.A.: Model for the catalytic oxidation of CO, including gas-phase impurities and CO desorption. Phys. Rev. E 88, 012132 (2013)

    Article  ADS  Google Scholar 

  5. Buendía, G.M., Rikvold, P.A.: A model for the catalytic oxidation of CO that includes CO desorption and diffusion, O repulsion and impurities in the gas phase. Physica A 424, 217–224 (2014)

    Article  Google Scholar 

  6. Chopard, B., Droz, M.: Cellular automata approach to non-equilibrium phase transitions in a surface reaction model: static and dynamic properties. J. Phys. A: Math. Gen. 21, 205–211 (1988)

    Article  ADS  Google Scholar 

  7. Chopard, B., Droz, M.: Cellular Automata Modeling of Physical Systems. Cambridge University Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  8. Clinton, J.: Chaos and Time-Series Analysis. Oxford University Press, Oxford (2003)

    MATH  Google Scholar 

  9. Córdoba, A., Lemos, M.C., Jiménez-Morales, F.: Periodical forcing for the control of chaos in a chemical reaction. J. Chem. Phys. 124, 014707 (2006)

    Article  ADS  Google Scholar 

  10. Córdoba, A., Lemos, M.C., Jiménez-Morales, F.: Stabilization from chaotic to periodical states in a model of cellular automaton for oxidation of CO. Phys. Rev. E 74, 016208 (2006)

    Article  ADS  Google Scholar 

  11. Dickman, R.: Kinetic phase transitions n a surface-reaction model: mean-field theory. Phys. Rev. A 34(5), 4246–4250 (1986)

    Article  ADS  Google Scholar 

  12. Ehsasi, M., Matloch, M., Frank, O., Block, J.H., Christmann, K., Rys, F.S., Hirschwald, W.: Steady and nonsteady rates of reaction in a heterogeneously catalyzed reaction: oxidation of CO on platinum, experiments and simulations. J. Chem. Phys. 91(8), 4949–4960 (1989)

    Article  ADS  Google Scholar 

  13. Engel, T., Ertl, G.: A molecular beam investigation of the catalytic oxidation of CO on Pd(111). J. Chem. Phys. 69(3), 1267–1281 (1978)

    Article  ADS  Google Scholar 

  14. Engel, T., Ertl, G.: Elementary steps in the catalytic oxidation of carbon monoxide on platinum metals. Adv. Catal. 28, 1–78 (1979)

    Google Scholar 

  15. Ertl, G.: Oscilatory catalytic reactions at single-cristal surfaces. Adv. Catal. 37, 213–277 (1990)

    Google Scholar 

  16. Feigenbaum, M.J.: Quantitative universality for a class of nonlinear transformations. J. Stat. Phys. 19, 24–52 (1978)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Hess, F., Farkas, A., Seitsonen, A.P., Over, H.: First principles kinetic Monte Carlo simulations revisited: CO oxidation over RuO\(_{2}\)(110). J. Comput. Chem. 33(7), 757–766 (2012)

    Article  Google Scholar 

  18. Kaukonen, H.P., Nieminen, R.M.: Computer simulations studies of the catalytic oxidation of carbon monoxide on platinum metals. J. Chem. Phys. 91(7), 4380–4386 (1989)

    Article  ADS  Google Scholar 

  19. Krischer, K., Eiswirth, M., Ertl, G.: Oscillatory CO oxidation on Pt(110): modeling of temporal self-organization. J. Chem. Phys. 96(12), 9161–9172 (1992)

    Article  ADS  Google Scholar 

  20. Lagos, R.E., Sales, B.C., Suhl, H.: Theory of oscillatory oxidation of carbon monoxide over platinum. Surf. Sci. 82, 525–539 (1979)

    Article  ADS  Google Scholar 

  21. Lemos, M.C., Córdoba, A.: A cellular automaton for a surface reaction: stabilization from chaotic to periodical states. Adv. Eng. Softw. 41(1), 32–37 (2010)

    Article  MATH  Google Scholar 

  22. Lemos, M.C., Jiménez-Morales, F.: A cellular automaton for the modeling of oscillations in a surface reaction. J. Chem. Phys. 121(7), 3206–3211 (2004)

    Article  ADS  Google Scholar 

  23. Lemos, M.C., Luque, J.J., Jiménez-Morales, F.: Bistability and oscillations in a surface reaction model. Phys. Rev. E 51(6), 5360–5364 (1995)

    Article  ADS  Google Scholar 

  24. Lemos, M.C., Luque, J.J., Jiménez-Morales, F.: Influence of the interaction on oscillatory behavior in a surface reaction model. J. Chem. Phys. 109(18), 8069–8075 (1998)

    Article  ADS  Google Scholar 

  25. Liu, D.J., Evans, J.W.: Atomistic lattice-gas modeling of CO oxidation on Pd(100): temperature-programed spectroscopy and steady-state behavior. J. Chem. Phys. 124(15), 154705 (2006)

    Article  ADS  Google Scholar 

  26. Liu, D.J., Evans, J.W.: Chemical diffusion of CO in mixed CO+O adlayers and reaction front propagation in CO oxidation on Pd(100). J. Chem. Phys. 125(5), 054709 (2006)

    Article  ADS  Google Scholar 

  27. Liu, D.J., Evans, J.W.: Atomistic and multiscale modeling of CO-oxidation on Pd(100) and Rh(100): from nanoscale fluctuations to mesoscale reaction fronts. Surf. Sci. 603(10–12), 1706–1716 (2009)

    Article  ADS  Google Scholar 

  28. Liu, D.J., Evans, J.W.: Realistic multisite lattice-gas modeling and KMC simulation of catalytic surface reactions: kinetics and multiscale spatial behavior for CO-oxidation on metal (100) surfaces. Prog. Surf. Sci. 88(4), 393–521 (2013)

    Article  ADS  Google Scholar 

  29. Mai, J., Niessen, W.V.: Cellular-automaton approach to a surface reaction. Phys. Rev. A 44(10), R6165–R6168 (1991)

    Article  ADS  Google Scholar 

  30. Marro, J., Dickman, R.: Nonequilibrium phase transitions in lattice models. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  31. Nagasaka, M., Kondoh, H., Nakai, I., Ohta, T.: CO oxidation reaction on Pt(111) studied by the dynamic Monte Carlo method including lateral interactions of adsorbates. J. Chem. Phys. 126(4), 044704 (2007)

    Article  ADS  Google Scholar 

  32. Petrova, N.V., Yakovkin, I.N.: Monte Carlo simulation of CO and O coadsorption and reaction on Pt(111). Surf. Sci. 578(1–3), 162–173 (2005)

    Article  ADS  Google Scholar 

  33. Pomeau, Y., Manneville, P.: Intermittent transition to turbulence in dissipative dynamical systems. Commun. Math. Phys. 74, 189–197 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  34. Rogal, J., Reuter, K., Scheffler, M.: CO oxidation on Pd(100) at technologically relevant pressure conditions: first-principles kinetic Monte Carlo study. Phys. Rev. B 77(15), 155410 (2008)

    Article  ADS  Google Scholar 

  35. Ruelle, D., Takens, F.: On the nature of turbulence. Commun. Math. Phys. 20, 167–192 (1971)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Slin’ko, M.M., Jaeger, N.I. (eds.): Oscillating Heterogeneous Catalytic Systems. Studies in Surface Science and Catalysis, vol. 86. Elsevier, Amsterdam (1994)

    Google Scholar 

  37. Slin’ko, M.M., Kurkina, E.S., Liauw, M.A., Jaeger, N.I.: Mathematical modeling of complex oscillatory phenomena during CO oxidation over Pd zeolite catalysts. J. Chem. Phys. 111(17), 8105–8114 (1999)

    Article  ADS  Google Scholar 

  38. Slin’ko, M.M., Ukharskii, A.A., Peskov, N.V., Jaeger, N.I.: Identification of the intermittency-I route to chaos in oscillating CO oxidation on zeolite-supported Pd. Faraday Discuss. 120, 179–195 (2001)

    Article  ADS  Google Scholar 

  39. Somorjai, G.A., Li, Y.: Introduction to Surface Chemistry and Catalysis, 2nd edn, p. 613. Wiley, New Jersey (2010). Section 9

    Google Scholar 

  40. Stamatakis, M.: Kinetic modelling of heterogeneous catalytic systems. J. Phys.-Condens. Mat. 27, 013001 (2015)

    Article  ADS  Google Scholar 

  41. Toffoli, T., Margolus, N.: Cellular Automata Machines. The MIT Press, Cambridge (1987)

    MATH  Google Scholar 

  42. Völkening, S., Wintterlin, J.: CO oxidation on Pt(111)-scanning tunneling microscopy experiments and Monte Carlo simulations. J. Chem. Phys. 114(14), 6382–6395 (2001)

    Article  ADS  Google Scholar 

  43. Zhdanov, V.P.: Monte Carlo simulations of oscillations, chaos and pattern formation in heterogeneous catalytic reactions. Surf. Sci. Rep. 45, 231–326 (2002)

    Article  ADS  Google Scholar 

  44. Ziff, R.M., Gulari, E., Barshad, Y.: Kinetic phase transitions in an irreversible surface-reaction model. Phys. Rev. Lett. 56, 2553–2556 (1986)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Junta de Andalucía partially funded the research group (FQM-122) to which the authors belong.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Jiménez-Morales .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jiménez-Morales, F., Lemos, M.C. (2018). A Cellular Automaton Model for the Catalytic Oxidation of CO Including CO Desorption and Diffusion. In: Archilla, J., Palmero, F., Lemos, M., Sánchez-Rey, B., Casado-Pascual, J. (eds) Nonlinear Systems, Vol. 2. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-72218-4_8

Download citation

Publish with us

Policies and ethics