Skip to main content

Nonlinear Vortex Light Beams Supported and Stabilized by Dissipation

  • Chapter
  • First Online:
  • 1183 Accesses

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

We describe nonlinear Bessel vortex beams as localized and stationary solutions with embedded vorticity to the nonlinear Schrödinger equation with a dissipative term that accounts for the multi-photon absorption processes taking place at high enough powers in common optical media. In these beams, power and orbital angular momentum are permanently transferred to matter in the inner, nonlinear rings, at the same time that they are refueled by spiral inward currents of energy and angular momentum coming from the outer linear rings, acting as an intrinsic reservoir. Unlike vortex solitons and dissipative vortex solitons, the existence of these vortex beams does not critically depend on the precise form of the dispersive nonlinearities, as Kerr self-focusing or self-defocusing, and do not require a balancing gain. It has been shown that these beams play an important role in “tubular” filamentation experiments with powerful, vortex-carrying Bessel beams, where they act as attractors in the beam propagation dynamics. Nonlinear Bessel vortex beams provide indeed a new solution to the question of the stable propagation of ring-shaped vortex light beams in homogeneous self-focusing Kerr media. A stability analysis demonstrates that there exist nonlinear Bessel vortex beams with single or multiple vorticity that are stable against azimuthal breakup and collapse, and that the mechanism that renders these vortexes stable is dissipation. The stability properties of nonlinear Bessel vortex beams explain the experimental observations in the tubular filamentation experiments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Adhikari, S.K.: Collapse of attractive Bose–Einstein condensed vortex states in a cylindrical trap. Phys. Rev. E 65, 016703 (2001)

    Article  ADS  Google Scholar 

  2. Akhmediev, N., Soto-Crespo, J.M., Grelu, P.: Spatiotemporal optical solitons in nonlinear dissipative media: from stationary light bullets to pulsating complexes. Chaos 17, 037112 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Alexander, T.J., Bergé, L.: Ground states and vortices of matter-wave condensates and optical guided waves. Phys. Rev. E 65, 026611 (2002)

    Article  ADS  Google Scholar 

  4. Allen, L., Padgett, M., Babiker, M.: The orbital angular momentum of light. Progr. Opt. 39, 291–372 (1999)

    Article  MathSciNet  Google Scholar 

  5. Aranson, I.S., Kramer, L.: The world of the complex Ginzburg–Landau equation. Rev. Mod. Phys. 74, 99–143 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Bergé, L.: Wave collapse in physics: principles and applications to light and plasma waves. Phys. Rep. 303, 259–370 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  7. Carr, L.D., Clark, C.W.: Vortices in attractive Bose–Einstein condensates in two dimensions. Phys. Rev. Lett. 97, 010403 (2006)

    Article  ADS  Google Scholar 

  8. Couairon, A., Gaizauskas, E., Faccio, D., Dubietis, A., Trapani, P.D.: Nonlinear X-wave formation by femtosecond filamentation in Kerr media. Phys. Rev. E 73, 016608 (2006)

    Article  ADS  Google Scholar 

  9. Couairon, A., Mysyrowicz, A.: Femtosecond filamentation in transparent media. Phys. Rep. 441, 47–189 (2007)

    Article  ADS  Google Scholar 

  10. Curtis, J.E., Grier, D.G.: Structure of optical vortices. Phys. Rev. Lett. 90, 133901 (2003)

    Article  ADS  Google Scholar 

  11. Daly, M., Sergides, M., Chormaic, S.N.: Optical trapping and manipulation of micrometer and submicrometer particles. Laser Photonics Rev. 9, 309–329 (2015)

    Article  Google Scholar 

  12. Desyatnikov, A.S., Torner, L., Kivshar, Y.S.: Optical vortices and vortex solitons. Progr. Opt. 47, 291–391 (2005)

    Article  Google Scholar 

  13. Dodd, R.J.: Approximate solutions of the nonlinear Schrödinger equation for ground and excited states of Bose–Einstein condensates. J. Res. Natl. Inst. Stand. Technol. 101, 545–552 (1996)

    Article  Google Scholar 

  14. Durnin, J.: Exact solutions for nondiffracting beams. I. The scalar theory. J. Opt. Soc. Am. A 4, 651–654 (1987)

    Article  ADS  Google Scholar 

  15. Durnin, J., Miceli, J.J., Eberly, J.H.: Diffraction-free beams. Phys. Rev. Lett. 58, 1499–1501 (1987)

    Article  ADS  Google Scholar 

  16. Falcao-Filho, E.L., de Araujo, C.B.: Robust two-dimensional spatial solitons in liquid carbon disulfide. Phys. Rev. Lett. 110, 013901 (2013)

    Article  ADS  Google Scholar 

  17. Fibich, G.: The Nonlinear Schrödinger Equation: Singular Solutions and Optical Collapse. Springer, Heidelberg (2015)

    Book  MATH  Google Scholar 

  18. Gaizauskas, E., Dubietis, A., Kudriasov, V., Sirutkaitis, V., Couairon, A., Faccio, D., Trapani, P.D.: On the role of conical waves in self-focusing and filamentation of femtosecond pulses with nonlinear losses. In: Boyd, R.W., Lukishova, S.G., Shen, Y.R. (eds.) Self-Focusing: Past and Present. Fundamentals and Prospects, Topics in Applied Physics, vol. 114, pp. 457–479. Springer, New York (2009)

    Chapter  Google Scholar 

  19. Jukna, V., Milián, C., Xie, C., Itina, T., Dudley, J., Courvoisier, F., Couairon, A.: Filamentation with nonlinear Bessel vortices. Opt. Express 22, 25410–25425 (2014)

    Article  ADS  Google Scholar 

  20. Kivshar, Y.S., Agrawal, G.P.: Optical Solitons: From Fibers to Photonic Crystals. Academic Press, San Diego (2003)

    Google Scholar 

  21. Kivshar, Y.S., Pelinovsky, D.E.: Self-focusing and transverse instabilities of solitary waves. Phys. Rep. 331, 117–195 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  22. Knobloch, E.: Spatial localization in dissipative systems. Annu. Rev. Condens. Matter Phys. 6, 325–359 (2015)

    Article  ADS  Google Scholar 

  23. Kruglov, V.I., Logvin, Y.A., Volkov, V.M.: The theory of spiral laser beams in nonlinear media. J. Mod. Opt. 39, 2277–2291 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Kruglov, V.I., Vlasov, R.A.: Spiral self-trapping propagation of optical beams in media with cubic nonlinearity. Phys. Lett. A 111, 401–404 (1985)

    Article  ADS  Google Scholar 

  25. Kuznetsov, E.A., Dias, F.: Bifurcations of solitons and their stability. Phys. Rep. 507, 43–105 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  26. Malomed, B.A., Crasovan, L.C., Mihalache, D.: Stability of vortex solitons in the cubic-quintic model. Physica D 161, 187–201 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Malomed, B.A., Mihalache, D., Wise, F., Torner, L.: Spatiotemporal optical solitons. J. Opt. B: Quantum Semiclassical Opt. 7, R53–R72 (2005)

    Article  ADS  Google Scholar 

  28. Malomed, B.A., Lederer, F., Mazilu, D., Mihalache, D.: On stability of vortices in three-dimensional self-attractive Bose–Einstein condensates. Phys. Rev. A 361, 336–340 (2007)

    MATH  Google Scholar 

  29. Masalov, A.V.: Transfer of a high angular momentum from a photon to an atom. Laser Phys. 7, 751–754 (1997)

    Google Scholar 

  30. Mihalache, D.: Linear and nonlinear light bullets: recent theoretical and experimental studies. Rom. J. Phys. 57, 352–371 (2012)

    Google Scholar 

  31. Mihalache, D., Mazilu, D., Lederer, F., Kartashov, Y.V., Crasovan, L.C., Torner, L., Malomed, B.A.: Stable vortex tori in the three-dimensional cubic-quintic Ginzburg–Landau equation. Phys. Rev. Lett. 97, 073904 (2006)

    Article  ADS  Google Scholar 

  32. Mihalache, D., Mazilu, D., Malomed, B.A., Lederer, F.: Vortex stability in nearly-two-dimensional Bose–Einstein condensates with attraction. Phys. Rev. A 73, 043615 (2006)

    Article  ADS  Google Scholar 

  33. Olver, W.J.: NIST Handbook of Mathematical Functions. Cambridge University Press, New York (2010)

    MATH  Google Scholar 

  34. Paz-Alonso, M.J., Michinel, H.: Superfluidlike motion of vortices in light condensates. Phys. Rev. Lett 94, 093901 (2005)

    Article  ADS  Google Scholar 

  35. Polesana, P., Faccio, P., Trapani, P.D., Dubietis, A., Piskarskas, A., Couairon, A., Porras, M.A.: High localization, focal depth and contrast by means of nonlinear Bessel beams. Opt. Express 13, 6160–6167 (2005)

    Article  ADS  Google Scholar 

  36. Polesana, P., Dubietis, A., Porras, M.A., Kucinskas, E., Faccio, D., Couairon, A., Trapani, P.D.: Near-field dynamics of ultrashort pulsed Bessel beams in media with Kerr nonlinearity. Phys. Rev. E 73, 056612 (2006)

    Article  ADS  Google Scholar 

  37. Polesana, P., Couairon, A., Faccio, D., Parola, A., Porras, M.A., Dubietis, A., Piskarskas, A., Trapani, P.D.: Observation of conical waves in focusing, dispersive, and dissipative Kerr media. Phys. Rev. Lett. 99, 223902 (2007)

    Article  ADS  Google Scholar 

  38. Polesana, P., Franco, M., Couairon, A., Faccio, D., Trapani, P.D.: Filamentation in Kerr media from pulsed bessel beams. Phys. Rev. A 77, 043814 (2008)

    Article  ADS  Google Scholar 

  39. Porras, M.A., Redondo, F.: On the stabilizing effect of nonlinear energy losses in light bullet propagation. J. Opt. Soc. Am. B 30, 603–609 (2013)

    Article  ADS  Google Scholar 

  40. Porras, M.A., Ruiz-Jiménez, C.: Nondiffracting and non-atenuating vortex light beams in media with nonlinear absorption of orbital angular momentum. J. Opt. Soc. Am. B 31, 2657–2664 (2014)

    Article  ADS  Google Scholar 

  41. Porras, M.A., Parola, A., Faccio, D., Dubietis, A., Trapani, P.D.: Nonlinear unbalanced Bessel beams: stationary conical waves supported by nonlinear losses. Phys. Rev. Lett. 93, 153902 (2004)

    Article  ADS  Google Scholar 

  42. Porras, M.A., Ruiz-Jiménez, C., Losada, J.C.: Underlying conservation and stability laws in nonlinear propagation of axicon-generated Bessel beams. Phys. Rev. A 92, 063826 (2015)

    Article  ADS  Google Scholar 

  43. Porras, M.A., Carvalho, M., Leblond, H., Malomed, B.A.: Stabilization of vortex beams in Kerr media by nonlinear absorption. Phys. Rev. A 94, 053810 (2016)

    Article  ADS  Google Scholar 

  44. Quiroga-Teixeiro, M., Michinel, H.: Stable azimuthal stationary state in quintic nonlinear optical media. J. Opt. Soc. Am. B 14, 2004–2009 (1997)

    Article  ADS  Google Scholar 

  45. Rotschild, C., Cohen, O., Manela, O., Segev, M.: Solitons in nonlinear media with an infinite range of nonlocality: first observation of coherent elliptic solitons and of vortex-ring solitons. Phys. Rev. Lett. 95, 213904 (2005)

    Article  ADS  Google Scholar 

  46. Saito, H., Ueda, M.: Split instability of a vortex in an attractive Bose–Einstein condensate. Phys. Rev. Lett. 89, 190402 (2002)

    Article  ADS  Google Scholar 

  47. Sakaguchi, H., Li, B., Malomed, B.A.: Creation of two-dimensional composite solitons in spin-orbit-coupled self-attractive Bose–Einstein condensates in free space. Phys. Rev. E 89, 032920 (2014)

    Article  ADS  Google Scholar 

  48. Salo, J., Fagerholm, J., Friberg, A., Salomaa, M.M.: Unified description of nondiffracting X and Y waves. Phys. Rev. E 62, 4261–4275 (2000)

    Article  ADS  Google Scholar 

  49. Schwarz, J., Rambo, P., Diels, J.C., Kolesik, M.: Ultraviolet filamentation in air. Opt. Commun. 180, 383–390 (2000)

    Article  ADS  Google Scholar 

  50. Silberberg, Y.: Solitons and two-photon absorption. Opt. Lett. 15, 1005–1007 (1990)

    Article  ADS  Google Scholar 

  51. Skupin, S., Nuter, R., Bergé, L.: Optical femtosecond filaments in condensed media. Phys. Rev. A 74, 043813 (2006)

    Article  ADS  Google Scholar 

  52. Sulem, C., Sulem, P.L.: The Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse. Springer, Berlin (1999)

    MATH  Google Scholar 

  53. Tabosa, J.W.R., Petrov, D.V.: Optical pumping of orbital angular momentum of light in cold Cesium atoms. Phys. Rev. E 83, 4967–4970 (1999)

    ADS  Google Scholar 

  54. Xie, C., Jukna, V., Milián, C., Giust, R., Ouadghiri-Idrissi, I., Itina, T., Dudley, J.M., Couairon, A., Courvoisier, F.: Tubular filamentation for laser material processing. Sci. Rep. 5, 8914 (2015)

    Article  ADS  Google Scholar 

  55. Yakimenko, I., Zaliznyak, Y.A., Kivshar, Y.: Stable vortex solitons in nonlocal self-focusing nonlinear media. Phys. Rev. E 71, 065603(R) (2005)

    Article  ADS  Google Scholar 

  56. Zhang, Y.C., Zhou, Z.W., Malomed, B.A., Pu, H.: Stable solitons in three dimensional free space without the ground state: self-trapped Bose–Einstein condensates with spin-orbit coupling. Phys. Rev. Lett. 115, 253902 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

M.A.P. acknowledges support from Project of the Spanish Ministerio de Economía y Competitividad No. MTM2015-63914-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel A. Porras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Porras, M.A., Ruiz-Jiménez, C., Carvalho, M. (2018). Nonlinear Vortex Light Beams Supported and Stabilized by Dissipation. In: Archilla, J., Palmero, F., Lemos, M., Sánchez-Rey, B., Casado-Pascual, J. (eds) Nonlinear Systems, Vol. 2. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-72218-4_5

Download citation

Publish with us

Policies and ethics