Skip to main content

Protein Folding in Vivo: From Anfinsen Back to Levinthal

  • Chapter
  • First Online:
Nonlinear Systems, Vol. 2

Abstract

In this chapter two visions of the protein folding process are confronted. The first is based on the thermodynamic hypothesis and the second is based on the kinetic hypothesis. Experimental results in support of each of the theories are reviewed and in some cases re-interpreted. While the thermodynamic hypothesis has been dominant since the 1970s, here it is argued that the experimental evidence favours the kinetic hypothesis, particularly in what concerns folding in vivo. A specific kinetic process, designated as the VES KM, is proposed. According to the VES KM the structure that all proteins have as they emerge from the ribosome is helical and the first step in folding is the bending of this helix at specific amino acid sites (i.e. the location of the bending sites depends on the protein sequence). Results from molecular dynamics simulations on a small all-\(\alpha \) protein demonstrate the theoretical viability of the VES KM. The chapter ends with a discussion on the state of the art in protein folding from the point of view of the VES KM and with proposals for future work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alexander, P.A., He, Y., Chen, Y., Orban, J., Bryan, P.N.: A minimal sequence code for switching protein structure and function. P. Natl. Acad. Sci. USA 106, 21149–21154 (2009)

    Article  ADS  Google Scholar 

  2. Allen, F., Almasi, G., Andreoni, W., Beece, D., Berne, B.J., Bright, A., Brunheroto, J., Cascaval, C., Castanos, J., Coteus, P., Crumley, P., Curioni, A., Denneau, M., Donath, W., Eleftheriou, M., Fitch, B., Fleischer, B., Georgiou, C.J., Germain, R., Giampapa, M., Gresh, D., Gupta, M., Haring, R., Ho, H., Hochschild, P., Hummel, S., Jonas, T., Lieber, D., Martyna, G., Maturu, K., Moreira, J., Newns, D., Newton, M., Philhower, R., Picunko, T., Pitera, J., Pitman, M., Rand, R., Royyuru, A., Salapura, V., Sanomiya, A., Shah, R., Sham, Y., Singh, S., Snir, M., Suits, F., Swetz, R., Swope, W.C., Vishnumurthy, N., Ward, T.J.C., Warren, H., Zhou, R.: Blue gene: a vision for protein science using a petaflop computer. IBM Syst. J. 40, 310–327 (2001)

    Article  Google Scholar 

  3. Anfinsen, C.B.: Principles that govern the folding of protein chains. Science 181(4096), 223–230 (1973)

    Article  ADS  Google Scholar 

  4. Anfinsen, C.B.: Commentary by C.B. Anfinsen, on “Studies on the structural basis of ribonuclease activity”, by Anfinsen, C.B., Harrington, W.F., Hvidt, A., Linderstrom-Lang, K., Ottesen, M., SchellmanJ. Biochim. Biophys. Acta 17, 141–142 (1955). Biochim. Biophys. Acta 1000, 197–199 (1989)

    Google Scholar 

  5. Anfinsen, C.B., Harrington, W.F., Hvidt, A., Linderstrom-Lang, K., Ottesen, M., Schellman, J.: Studies on the structural basis of ribonuclease activity. Biochim. Biophys. Acta 17, 141–142 (1955)

    Article  Google Scholar 

  6. Aramini, J., Sharma, S., Huang, Y., Swapna, G., Ho, C., Shetty, K., Cunningham, K., Ma, L., Zhao, L., Owens, L., Jiang, M., Xiao, R., Liu, J., Baran, M., Acton, T., Rost, B., Montelione, G.: Solution NMR structure of the SOS response protein YnzC from Bacillus subtilis. Proteins 72, 526–530 (2008)

    Article  Google Scholar 

  7. Austin, R.H., Xie, A., Fu, D., Warren, W.W., Redlich, B., van der Meer, L.: Tilting after Dutch windmills: probably no long-lived Davydov solitons in proteins. J. Biol. Phys. 35, 91–101 (2009)

    Article  Google Scholar 

  8. Baker, D., Agard, D.A.: Kinetics versus thermodynamics in protein folding. Biochemistry 356, 263–265 (1994)

    Google Scholar 

  9. Baker, D., Sohl, J.L., Agard, D.A.: A protein-folding reaction under kinetic control. Nature 356, 263–265 (1992)

    Article  ADS  Google Scholar 

  10. Ban, N., Nissen, P., Hansen, J., Moore, P.B., Steitz, T.A.: The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science 289, 905–920 (2000)

    Article  ADS  Google Scholar 

  11. Banerji, A., Ghosh, I.: Revisiting the myths of protein interior: studying proteins with mass-fractal hydrophobicity-fractal and polarizability-fractal dimensions. PLoS ONE 4, e7361 (2009)

    Article  ADS  Google Scholar 

  12. Ben-Naim, A.: Levinthal’s question revisited, and answered. J. Biomol. Struct. Dyn. 30, 113–124 (2012)

    Article  Google Scholar 

  13. Ben-Naim, A.: Myths and Verities in Protein Folding Theories, 1st edn. World Scientific, Singapore (2016)

    Book  Google Scholar 

  14. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E.: The protein data bank. Nucleic Acids Res. 28, 235–242 (2000)

    Article  Google Scholar 

  15. Bolhuis, P.G., Chandler, D., Geissler, P.L.: Transition path sampling: throwing ropes over rough mountain passes, in the dark. Annu. Rev. Phys. Chem. 53, 291–318 (2002)

    Article  ADS  Google Scholar 

  16. Bowers, K.J., Chow, E., Xu, H., Dror, R.O., Eastwood, M.P., Gregersen, B.A., Klepeis, J.L., Kolossvary, I., Moraes, M.A., Sacerdoti, F.D., Salmon, J.K., Shan, Y., Shaw, D.E.: Scalable algorithms for molecular dynamics simulations on commodity clusters. In: Proceedings of the ACM/IEE Conference on Supercomputing, SC’06, pp. 84:1–84:13. ACM, New York (2006)

    Google Scholar 

  17. Bowler, B.E.: Residual structure in unfolded proteins. Curr. Opin. Struc. Biol. 22, 4–13 (2012)

    Article  Google Scholar 

  18. Bradley, P., Misura, K.M.S., Baker, D.: Toward high-resolution de novo structure prediction for small proteins. Science 309, 1868–1871 (2005)

    Article  ADS  Google Scholar 

  19. Braselmann, E., Chaney, J.L., Clark, P.L.: Folding the proteome. Trends Biochem. Sci. 38, 337–344 (2013)

    Article  Google Scholar 

  20. Brockwell, D.J., Radford, S.E.: Intermediates: ubiquitous species on folding energy landscapes? Curr. Opin. Struc. Biol. 17, 30–37 (2007)

    Article  Google Scholar 

  21. Brooks, B.R., Brooks III, C.L., Mackerell Jr., A.D., Nilsson, L., Petrella, R.J., Roux, B., Won, Y., Archontis, G., Bartels, C., Boresch, S., Caflisch, A., Caves, L., Cui, Q., Dinner, A.R., Feig, M., Fischer, S., Gao, J., Hodoscek, M., Im, W., Kuczera, K., Lazaridis, T., Ma, J., Ovchinnikov, V., Paci, E., Pastor, R.W., Post, C.B., Pu, J.Z., Schaefer, M., Tidor, B., Venable, R.M., Woodcock, H.L., Wu, X., Yang, W., York, D.M., Karplus, M.: CHARMM: the biomolecular simulation program. J. Comput. Chem. 30, 1545–1614 (2009)

    Article  Google Scholar 

  22. Brown, M.C., Mutter, A.C., Koder, R.L., JiJia, R.D., Cooleya, J.W.: Observation of persistent a-helical content and discrete types of backbone disorder during a molten globule to ordered peptide transition via deep-UV resonance Raman spectroscopy. J. Raman Spectrosc. 44, 957–962 (2013)

    Article  ADS  Google Scholar 

  23. Bryngelson, J.D., Wolynes, P.G.: Spin glasses and the statistical mechanics of protein folding. P. Natl. Acad. Sci. USA 84(21), 7524–7528 (1987)

    Article  ADS  Google Scholar 

  24. Careri, G., Wyman, J.: Soliton-assisted unidirectional circulation in a biochemical cycle. P. Natl. Acad. Sci. USA 81, 4386–4388 (1984)

    Article  ADS  Google Scholar 

  25. Case, D.A., Cheatham, T.E.I., Darden, T., Gohlke, H., Luo, R., Merz, K.M.J., Onufriev, A., Simmerling, C., Wang, B., Woods, R.: The AMBER biomolecular simulation programs. J. Comput. Chem. 26(16), 1668–1688 (2005)

    Article  Google Scholar 

  26. Chatterjee, A., Kumar, A., Chugh, J., Srivastava, S., Bhavesh, N.S., Hosur, R.V.: NMR of unfolded proteins. J. Chem. Sci. 117(1), 3–21 (2005)

    Article  Google Scholar 

  27. Chaudhuri, T.K., Farr, G.W., Fenton, W.A., Rospert, S., Horwich, A.L.: GroEL/GroES-mediated folding of a protein too large to be encapsulated. Cell 107, 235–246 (2001)

    Article  Google Scholar 

  28. Cheng, X., Cui, G., Hornak, V., Simmerling, C.: Modified replica exchange simulation methods for local structure refinement. J. Phys. Chem. B 109, 8220–8230 (2005)

    Article  Google Scholar 

  29. Christen, M., Hünenberger, P.H., Bakowies, D., Baron, R., Bürgi, R., Geerke, D.P., Heinz, T.N., Kastenholz, M.A., Kräutler, V., Oostenbrink, C., Peter, C., Trzesniak, D., van Gunsteren, W.F.: The GROMOS software for biomolecular simulation: GROMOS05. J. Comput. Chem. 26(16), 1719–1751 (2005)

    Article  Google Scholar 

  30. Cruzeiro, L.: Influence of the nonlinearity and dipole strength on the amide I band of protein \(\alpha \)-helices. J. Chem. Phys. 123, 234909 (2005)

    Google Scholar 

  31. Cruzeiro, L.: Why are proteins with Glutamine- and Asparagine-rich regions associated with protein misfolding diseases? J. Phys-Condens. Mat. 17, 7833–7844 (2005)

    Article  ADS  Google Scholar 

  32. Cruzeiro, L.: Protein’s multi-funnel energy landscape and misfolding diseases. J. Phys. Org. Chem. 21, 549–554 (2008)

    Article  Google Scholar 

  33. Cruzeiro, L.: The Davydov/Scott model for energy storage and transport in proteins. J. Biol. Phys. 35, 43–55 (2009)

    Article  Google Scholar 

  34. Cruzeiro, L.: Protein folding. In: Springborg, M. (ed.) Chemical Modelling, pp. 89–114. Royal Society of Chemistry, London (2010)

    Chapter  Google Scholar 

  35. Cruzeiro, L.: A kinetic mechanism for in vivo protein folding. Bio-Algorithms Med-Syst. 10(3), 117–127 (2014)

    Google Scholar 

  36. Cruzeiro, L.: The VES hypothesis and protein conformational changes. Z. Phys. Chem. 230, 743–776 (2016)

    Article  Google Scholar 

  37. Cruzeiro, L., Degrève, L.: What is the shape of the distribution of protein conformations at equilibrium? J. Biomol. Struct. Dyn. 33(7), 1539–1546 (2015)

    Article  Google Scholar 

  38. Cruzeiro, L., Degrève, L.: Exploring the Levinthal limit in protein folding. J. Biol. Phys. 43(1), 15–30 (2016)

    Article  Google Scholar 

  39. Cruzeiro, L., Lopes, P.A.: Are the native states of proteins kinetic traps? Mol. Phys. 107(14), 1485–1493 (2009)

    Article  ADS  Google Scholar 

  40. Cruzeiro-Hansson, L., Takeno, S.: Davydov model: the quantum, mixed quantum-classical, and full classical systems. Phys. Rev. E 56, 894–906 (1997)

    Article  ADS  Google Scholar 

  41. Davydov, A.S.: The theory of contraction of proteins under their excitation. J. Theor. Biol. 38, 559–569 (1973)

    Article  Google Scholar 

  42. Davydov, A.S.: Solitons in Molecular Systems, 2nd edn. Kluwer Academic publication, Dordrecht (1991)

    Book  MATH  Google Scholar 

  43. Dellago, C., Bolhuis, P.G., Csajka, F.S., Chandler, D.: Transition path sampling and the calculation of rate constants. J. Chem. Phys. 108, 1964–1977 (1998)

    Article  ADS  Google Scholar 

  44. Dill, K.A.: Theory for the folding and stability of globular proteins. Biochemistry 24, 1501–1509 (1985)

    Article  Google Scholar 

  45. Dill, K.A., Chan, H.S.: From Levinthal to pathways to funnels. Nat. Struct. Biol. 4, 10–19 (1997)

    Article  Google Scholar 

  46. Dill, K.A., MacCallum, J.L.: The protein-folding problem, 50 years on. Science 338, 1042–1046 (2012)

    Article  ADS  Google Scholar 

  47. Dill, K.A., Bromberg, S., Yue, K., Fiebig, K.M., Yee, D.P., Thomas, P.D., Chan, H.S.: Principles of protein folding: a perspective from simple exact models. Protein Sci. 4, 561–602 (1995)

    Article  Google Scholar 

  48. Dill, K.A., Ozkan, S.B., Shell, M.S., Weikl, T.R.: The protein folding problem. Annu. Rev. Biophys. 37, 289–316 (2008)

    Article  ADS  Google Scholar 

  49. Dobson, C.M.: Protein-misfolding diseases: getting out of shape. Nature 418, 729–730 (2002)

    Article  ADS  Google Scholar 

  50. Dobson, C.M.: Protein folding and misfolding. Nature 426, 884–890 (2003)

    Article  ADS  Google Scholar 

  51. Echenique, P.: Introduction to protein folding for physicists. Contemp. Phys. 48, 81–108 (2007)

    Article  ADS  Google Scholar 

  52. Edler, J., Hamm, P.: Self-trapping of the amide I band in a peptide model crystal. J. Chem. Phys. 117, 2415–2424 (2002)

    Article  ADS  Google Scholar 

  53. Edwards, G., Logan, R., Copeland, M., Reinisch, L., Davidson, J., Johnson, B., Maciunas, R., Mendenhall, M., Ossoff, R., Tribble, J., Werkhaven, J., O’Day, D.: Tissue ablation by a free-electron laser tuned to the amide II band. Nature 371, 416–419 (1994)

    Article  ADS  Google Scholar 

  54. Ellis, J.P., Bakke, C.K., Kirchdoerfer, R.N., Jungbauer, L.M., Cavagnero, S.: Chain dynamics of nascent polypeptides emerging from the ribosome. ACS Chem. Biol. 3, 555–566 (2008)

    Article  Google Scholar 

  55. Englander, S.W.: Protein folding intermediates and pathways studied by hydrogen exchange. Annu. Rev. Bioph. Biom. 29, 213–238 (2000)

    Article  Google Scholar 

  56. Englander, S.W., Mayne, L., Kan, Z.Y., Hu, W.: Protein folding: how and why: by hydrogen exchange, fragment separation, and mass spectrometry. Annu. Rev. Biophys. 45, 135–152 (2016)

    Article  Google Scholar 

  57. Evans, M.S., Sander, I.M., Clark, P.L.: Cotranslational folding promotes beta-helix formation and avoids aggregation in vivo. J. Mol. Biol. 383, 683–692 (2008)

    Article  Google Scholar 

  58. Fändrich, M., Fletcher, M.A., Dobson, C.M.: Amyloid fibrils from muscle myoglobin. Nature 410, 165–166 (2001)

    Article  ADS  Google Scholar 

  59. Fang, C., Senes, A., Cristian, L., DeGrado, W.F., Hochstrasser, R.M.: Amide vibrations are delocalized across the hydrophobic interface of a transmembrane helix dimer. P. Natl. Acad. Sci. USA 103, 16740–16745 (2006)

    Article  ADS  Google Scholar 

  60. Fazi, B., Cope, M.J., Douangamath, A., Ferracuti, S., Schirwitz, K., Zucconi, A., Drubin, D.G., Wilmanns, M., Cesareni, G., Castagnoli, L.: Unusual binding properties of the \(SH\)3 domain of the yeast actinbinding protein Abp1: structural and functional analysis. J. Biol. Chem. 277, 5290–5298 (2002)

    Article  Google Scholar 

  61. Fersht, A.: Structure and Mechanism in Protein Science: A Guide to Enzyme Cataysis and Protein Folding, 2nd edn. W. H. Freeman and Company, New York (1999)

    Google Scholar 

  62. Fitzkee, N.C., Rose, G.D.: Reassessing random-coil statistics in unfolded proteins. P. Natl. Acad. Sci. USA 101, 12497–12502 (2004)

    Article  ADS  Google Scholar 

  63. Frauenfelder, H., Sligar, S.G., Wolynes, P.G.: The energy landscapes and motions of proteins. Science 254, 1598–1603 (1991)

    Article  ADS  Google Scholar 

  64. Freddolino, P.L., Harrison, C.B., Liu, Y., Schulten, K.: Challenges in protein-folding simulations. Nat. Phys. 6, 751–758 (2010)

    Article  Google Scholar 

  65. Gallagher, T., Alexander, P., Bryan, P., Gillilan, G.L.: Two crystal structures of the B1 immunoglobulinbinding domain of streptococcal protein G and comparison with NMR. Biochemistry 33, 4721–4729 (1994)

    Article  Google Scholar 

  66. Gettins, P.G.W.: Serpin structure, mechanism, and function. Chem. Rev. 102, 4751–4803 (2002)

    Article  Google Scholar 

  67. Givol, D., De Lorenzo, F., Goldberger, R.F., Anfinsen, C.B.: Dissulfide interchange and the three dimensional structure of proteins. Biochemistry 53, 676–684 (1965)

    Google Scholar 

  68. Gouda, H., Torigoe, H., Saito, A., Sato, M., Arata, Y., Shimada, I.: Three-dimensional solution structure of the B domain of staphylococcal protein A: comparisons of the solution and crystal structures. Biochemistry 31, 9665–9672 (1992)

    Article  Google Scholar 

  69. Gruebele, M., Dave, K., Sukenik, S.: Globular protein folding in vitro and in vivo. Annu. Rev. Biophys. 45, 233–251 (2016)

    Article  Google Scholar 

  70. Gutte, B., Merrifield, R.B.: The synthesis of ribonuclease A. J. Biol. Chem. 246, 1922–1940 (1971)

    Google Scholar 

  71. Hamelberg, D., Mongan, J., McCammon, J.A.: Accelerated molecular dynamics: a promising and efficient simulation method for biomolecules. J. Chem. Phys. 120, 11919–11929 (2004)

    Article  ADS  Google Scholar 

  72. Hamm, P.: Femtosecond IR pump-probe spectroscopy of nonlinear energy localization in protein models and model proteins. J. Biol. Phys. 35, 17–30 (2009)

    Article  Google Scholar 

  73. Hingorani, K.S., Gierasch, L.M.: Comparing protein folding in vitro and in vivo: foldability meets the fitness challenge. Curr. Opin. Struc. Biol. 24, 81–90 (2014)

    Article  Google Scholar 

  74. Hukushima, K., Nemoto, K.: Exchange Monte Carlo method and application to spin glass simulations. J. Phys. Soc. Jpn. 65, 1604–1608 (1996)

    Article  ADS  Google Scholar 

  75. Humphrey, W., Dalke, A., Schulten, K.: VMD: visual molecular dynamics. J. Mol. Graphics. 14, 33–38 (1996)

    Article  Google Scholar 

  76. Hynes, T.R., Randal, M., Kennedy, L.A., Eigenbrot, C., Kossiakoff, A.A.: X-ray crystal structure of the protease inhibitor domain of Alzheimer’s amyloid betaprotein precursor. Biochemistry 29, 10018–10022 (1990)

    Article  Google Scholar 

  77. Ishikawa, H., Shimoda, M., Yonekura, A., Mishima, K., Matsumoto, K., Osajima, Y.: Irreversible unfolding of myoglobin in an aqueous solution by supercritical carbon dioxide. J. Agr. Food Chem. 48, 4535–4539 (2000)

    Article  Google Scholar 

  78. Jiang, F., Wu, Y.D.: Folding of fourteen small proteins with a residue-specific force field and replica-exchange molecular dynamics. J. Am. Chem. Soc. 136, 9536–9539 (2014)

    Article  Google Scholar 

  79. Kaiser, C.M., Goldman, D.H., Chodera, J.D., Tinoco Jr., I., Bustamante, C.: The ribosome modulates nascent protein folding. Science 334, 1723–1727 (2011)

    Article  ADS  Google Scholar 

  80. Karplus, M.: The Levinthal paradox: yesterday and today. Fold. Des. 2, S69–S75 (1997)

    Article  Google Scholar 

  81. Kawasaki, T., Fujioka, J., Imai, T., Tsukiyama, K.: Effect of midinfrared free-electron laser irradiation on refolding of amyloid-like fibrils of lysozyme into native form. Protein J. 31, 710–716 (2012)

    Article  Google Scholar 

  82. Kawasaki, T., Fujioka, J., Imai, T., Torigoe, K., Tsukiyama, K.: Mid-infrared free-electron laser tuned to the amide I band for converting insoluble amyloid-like protein fibrils into the soluble monomeric form. Laser Med. Sci. 29, 1701–1707 (2014)

    Article  Google Scholar 

  83. Kim, P.S., Baldwin, R.L.: Intermediates in the folding reactions of small proteins. Annu. Rev. Biochem. 59, 631–660 (1990)

    Article  ADS  Google Scholar 

  84. Kimchi-Sarfaty, C., Oh, J.M., Kim, I.W., Sauna, Z.E., Calcagno, A.M., Ambudkar, S.V., Gottesman, M.M.: A “silent” polymorphism in the MDR1 gene changes substrate specificity. Science 315(5811), 525–528 (2007)

    Article  ADS  Google Scholar 

  85. Klimov, D.K., Thirumalai, D.: Factors governing the foldability of proteins. Proteins: Struct. Funct. Genet. 26, 26,411–26,441 (1996)

    Article  Google Scholar 

  86. Kohn, J.E., Millett, I.S., Jacob, J., Zagrovic, B., Dillon, T.M., Cingel, N., Dothager, R.S., Seifert, S., Thiyagarajan, P., Sosnick, T.R., Hasan, M.Z., Pande, V.S., Ruczinski, I., Doniach, S., Plaxco, K.W.: Random-coil behavior and the dimensions of chemically unfolded proteins. P. Natl. Acad. Sci. USA 101, 12491–12496 (2004)

    Article  ADS  Google Scholar 

  87. Kuhlman, B., Baker, D.: Exploring folding free energy landscapes using computational protein design. Curr. Opin. Struc. Biol. 14, 89–95 (2004)

    Article  Google Scholar 

  88. Lau, K.F., Dill, K.A.: A lattice statistical mechanics model of the conformational and sequence spaces of proteins. Macromolecules 22, 3986–3997 (1989)

    Article  ADS  Google Scholar 

  89. Lazaridis, T., Karplus, M.: “New view” of protein folding reconciled with the old through multiple unfolding simulations. Science 278, 1928–1931 (1997)

    Article  ADS  Google Scholar 

  90. Lazaridis, T., Karplus, M.: Hidden complexity of free energy surfaces for peptide (protein) folding. P. Natl. Acad. Sci. USA 101, 14766–14770 (2004)

    Article  ADS  Google Scholar 

  91. Levinthal, C.: Are there pathways for protein folding? J. Chim. Phys. 65, 44–45 (1968)

    Article  Google Scholar 

  92. Levinthal, C.: How to fold graciously. In: DeBrunner, J.T.P., Munck, E. (eds.) Mossbauer Spectroscopy in Biological Systems: Proceedings of a meeting held at Allerton House, Monticello, Illinois, vol. 22, pp. 22–24. University of Illinois Press (1969)

    Google Scholar 

  93. Liang, J., Dill, K.A.: Are proteins well-packed? Biophys. J. 81, 751–766 (2001)

    Article  ADS  Google Scholar 

  94. Lindorff-Larsen, K., Piana, S., Dror, R.O., Shaw, D.E.: How fast-folding proteins fold. Science 334, 517–520 (2011)

    Article  ADS  Google Scholar 

  95. Lu, H., Isralewitz, B., Krammer, A., Vogel, V., Schulten, K.: Unfolding of titin immunoglobulin domains by steered molecular dynamics simulation. Biophys. J. 75, 662–671 (1998)

    Article  ADS  Google Scholar 

  96. Lumry, R., Eyring, H.: Conformation changes of proteins. J. Phys. Chem. 58, 110–120 (1954)

    Article  Google Scholar 

  97. Marino, J., von Heijne, G., Beckmann, R.: Small protein domains fold inside the ribosome exit tunnel. FEBS Lett. 590, 655–660 (2016)

    Article  Google Scholar 

  98. Maxwell, K.L., Wildes, D., Zarrine-Afsar, A., De Los Rios, M.A., Brown, A.G., Friel, C.T., Hedberg, L., Horng, J.C., Bona, D., Miller, E.J., Vallée-Bélisle, A., Main, E.R., Bemporad, F., Qiu, L., Teilum, K., Vu, N.D., Edwards, A.M., Ruczinski, I., Poulsen, F.M., Kragelund, B.B., Michnick, S.W., Chiti, F., Bai, Y., Hagen, S.J., Serrano, L., Oliveberg, M., Raleigh, D.P., Wittung-Stafshede, P., Radford, S.E., Jackson, S.E., Sosnick, T.R., Marqusee, S., Davidson, A.R., Plaxco, K.W.: Protein folding: defining a “standard” set of experimental conditions and a preliminary kinetic data set of two-state proteins. Protein Sci. 14(3), 602–616 (2005)

    Article  Google Scholar 

  99. McClare, C.W.F.: Resonance in bioenergetics. Ann. N.Y. Acad. Sci. 227, 74–97 (1974)

    Article  ADS  Google Scholar 

  100. Merrifield, R.B.: The synthesis of ribonuclease A. Protein Sci. 5, 1947–1951 (1996)

    Article  Google Scholar 

  101. Meyerguz, L., Kleinberg, J., Elber, R.: The network of sequence flow between protein structures. P. Natl. Acad. Sci. USA 104, 11627–11632 (2007)

    Article  ADS  Google Scholar 

  102. Mitra, R.K., Sinha, S.S., Pal, S.K.: Hydration in protein folding: thermal unfolding/refolding of human serum albumin. Langmuir 23, 10224–10229 (2007)

    Article  Google Scholar 

  103. Mukherjee, S., Sharma, S., Kumar, S., Guptasarma, P.: Slow irreversible unfolding of Pyrococcus furiosus triosephosphate isomerase: separation and quantitation of conformers through a novel electrophoretic approach. Anal. Biochem. 347, 49–59 (2005)

    Article  Google Scholar 

  104. O’Brien, E.P., Ciryam, P., Vendruscolo, M., Dobson, C.M.: Understanding the influence of codon translation rates on cotranslational protein folding. Acc. Chem. Res. 47, 1536–1544 (2014)

    Article  Google Scholar 

  105. Olshina, M.A., Baumann, H., Willison, K.R., Baum, J.: Plasmodium actin is incompletely folded by heterologous protein-folding machinery and likely requires the native Plasmodium chaperonin complex to enter a mature functional state. FASEB J. 30(1), 405–416 (2016)

    Article  Google Scholar 

  106. Onuchic, J.N., Luthey-Schulten, Z., Wolynes, P.G.: Theory of protein folding: the energy landscape perspective. Annu. Rev. Phys. Chem. 48, 545–600 (1997)

    Article  ADS  Google Scholar 

  107. Orengo, C.A., Michie, A.D., Jones, S., Jones, D.T., Swindells, M.B., Thornton, J.M.: CATH- a hierarchic classification of protein domain structures. Sructure 5, 1093–1108 (1997)

    Article  Google Scholar 

  108. Paola, L.D., Paci, P., Santoni, D., Ruvo, M.D., Giuliani, A.: Proteins as sponges: a statistical journey along protein structure organization principles. J. Chem. Inf. Model. 52, 474–482 (2012)

    Article  Google Scholar 

  109. Plaxco, K.W., Simons, K.T., Baker, D.: Contact order, transition state placement and the refolding rates of single domain proteins. J. Mol. Biol. 277, 985–994 (1998)

    Article  Google Scholar 

  110. Plaxco, K.W., Simons, K.T., Ruczinski, I., Baker, D.: Topology, stability, sequence, and length: defining the determinants of two-state protein folding kinetics. Biochemistry 39, 11177–11183 (2000)

    Article  Google Scholar 

  111. Prusiner, S.B.: Novel proteinaceous infectious particles cause scrapie. Science 216, 136–144 (1982)

    Article  ADS  Google Scholar 

  112. Prusiner, S.B., McCarty, M.: Discovering DNA encodes heredity and prions are infectious proteins. Annu. Rev. Genet. 40, 25–45 (2006)

    Article  Google Scholar 

  113. Ptitsyn, O.B.: How the molten globule became. Trends Biochem. Sci. 20, 376–379 (1995)

    Article  Google Scholar 

  114. Qian, B., Raman, S., Das, R., Bradley, P., McCoy, A.J., Read, R.J., Baker, D.: High-resolution structure prediction and the crystallographic phase problem. Nature 450, 259–264 (2007)

    Article  ADS  Google Scholar 

  115. Raval, A., Piana, S., Eastwood, M.P., Dror, R.O., Shaw, D.E.: Refinement of protein structure homology models via long, all-atom molecular dynamics simulations. Proteins: Struct. Funct. Bioinform. 80, 2071–2079 (2012)

    Google Scholar 

  116. Religa, T.L., Markson, J.S., Mayor, U., Freund, S.M.V., Fersht, A.R.: Solution structure of a protein denatured state and folding intermediate. Nature 437, 1053–1056 (2005)

    Article  ADS  Google Scholar 

  117. Roder, H., Colón, W.: Kinetic role of early intermediates in protein folding. Curr. Opin. Struc. Biol. 7, 15–28 (1997)

    Article  Google Scholar 

  118. Rother, K., Preissner, R., Goede, A., Frömmel, C.: Inhomogeneous molecular density: reference packing densities and distribution of cavities within proteins. Bioinformatics 19, 2112–2121 (2003)

    Article  Google Scholar 

  119. Rothman, J.E., Schekman, R.: Molecular mechanism of protein folding in the cell. Cell 146, 851–854 (2011)

    Article  Google Scholar 

  120. Rumfeldt, J.A., Stathopulos, P.B., Chakrabarrty, A., Lepock, J.R., Meiering, E.M.: Mechanism and thermodynamics of guanidinium chloride-induced denaturation of ALS-associated mutant Cu,Zn superoxide dismutases. J. Mol. Biol. 355, 106–123 (2006)

    Article  Google Scholar 

  121. Sanchez-Ruiz, J.M.: Protein kinetic stability. Biophys. Chem. 148, 1–15 (2010)

    Article  Google Scholar 

  122. Savage, H.J., Elliot, C.J., Freeman, C.M., Finney, J.L.: Lost hydrogen-bonds and buried surface-area: rationalizing stability in globular-proteins. J. Chem. Soc., Faraday Trans. 89, 2609–2617 (1993)

    Article  Google Scholar 

  123. Schechter, A.N., Chen, R.F., Anfinsen, C.B.: Kinetics of folding of staphylococcal nuclease. Science 167, 886–887 (1970)

    Article  ADS  Google Scholar 

  124. Schlick, T., Collepardo-Guevara, R., Halvorsen, L.A., Jung, S., Xiao, X.: Biomolecular modeling and simulation: a field coming of age. Q. Rev. Biophys. 44, 191–228 (2011)

    Article  Google Scholar 

  125. Schlitter, J., Engels, M., Kruger, P.: Targeted molecular-dynamics - a new approach for searching pathways of conformational transitions. J. Mol. Graphics 12, 84–89 (1994)

    Article  Google Scholar 

  126. Schram, R.D., Schiessel, H.: Exact enumeration of Hamiltonian walks on the 4 \(\times \) 4 \(\times \) 4 cube and applications to protein folding. J. Phys. A-Math. Theor. 46, 485001 (2013)

    Google Scholar 

  127. Schram, R.D., Schiessel, H.: Corrigendium: Exact enumeration of Hamiltonian walks on the 4 \(\times \) 4 \(\times \) 4 cube and applications to protein folding (J. Phys. A: Math. Theor. 46, 485001, 2013). J. Phys. A-Math. Theor. 49, 369501 (2016)

    Google Scholar 

  128. Scott, A.: The Davydov soliton revisited. Phys. Rep. 217, 1–67 (1992)

    Article  ADS  Google Scholar 

  129. Shaw, D.E., Dror, R.O., Salmon, J.K., Grossman, J.P., Mackenzie, K.M., Bank, J.A., Young, C., Deneroff, M.M., Batson, B., Bowers, K.J., Chow, E., Eastwood, M.P., Ierardi, D.J., Klepeis, J.L., Kuskin, J.S., Larson, R.H., Lindorff-Larsen, K., Maragakis, P., Moraes, M.A., Piana, S., Shan, Y., Towles, B.: Millisecond-scale molecular dynamics simulations on Anton. In: Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis, SC’09, pp. 65:1–65:11. ACM, New York (2009)

    Google Scholar 

  130. Shaw, D.E., Maragakis, P., Lindorff-Larsen, K., Piana, S., Dror, R.O., Eastwood, M.P., Bank, J.A., Jumper, J.M., Salmon, J.K., Shan, Y., Wriggers, W.: Atomic-level characterization of the structural dynamics of proteins. Science 330, 341–346 (2010)

    Article  ADS  Google Scholar 

  131. Shi, Z., Chen, K., Liu, Z., Kallenbach, N.R.: Conformation of the backbone in unfolded proteins. Chem. Rev. 106, 1877–1897 (2006)

    Article  Google Scholar 

  132. Shortle, D., Ackerman, M.S.: Persistence of native-like topology in a denatured protein in 8 M urea. Science 293, 487–489 (2001)

    Article  Google Scholar 

  133. Sieler, G., Schweitzer-Stenner, R.: The amide I mode of peptides in aqueous solution involves vibrational coupling between the peptide group and water molecules of the hydration shell. J. Am. Chem. Soc. 119, 1720–1726 (1997)

    Article  Google Scholar 

  134. Silva, P.A.S., Cruzeiro-Hansson, L.: A reduced set of exact equations of motion for a non-number-conserving Hamiltonian. Phys. Lett. A 315(6), 447–451 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  135. Silva, P.A.S., Cruzeiro-Hansson, L.: Dynamics of a nonconserving Davydov monomer. Phys. Rev. E 74, 021920 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  136. Skolnick, J.: Putting the pathway back into protein folding. P. Natl. Acad. Sci. USA 102(7), 2265–2266 (2005)

    Article  ADS  Google Scholar 

  137. Sohl, J.L., Jaswal, S.S., Agard, D.A.: Unfolded conformations of \(\alpha \)-lytic protease are more stable than its native state. Nature 395, 817–819 (1998)

    Google Scholar 

  138. Spencer, P.S., Siller, E., Anderson, J.F., Barral, J.M.: Silent substitutions predictably alter translation elongation rates and protein folding efficiencies. J. Mol. Biol. 422, 328–335 (2012)

    Article  Google Scholar 

  139. Taverna, D.M., Goldstein, R.A.: Why are proteins marginally stable? Proteins: Struct. Funct. Genet. 46, 105–109 (2002)

    Article  Google Scholar 

  140. Tuinstra, R.L., Peterson, F.C., Kutlesa, S., Elgin, E.S., Kron, M.A., Volkman, B.F.: Interconversion between two unrelated protein folds in the lymphotactin native state. P. Natl. Acad. Sci. U.S.A. 105, 5057–5062 (2008)

    Article  ADS  Google Scholar 

  141. Ugrinov, K.G., Clark, P.L.: Cotranslational folding increases GFP folding yield. Biophys J. 98, 1312–1320 (2010)

    Article  ADS  Google Scholar 

  142. Vogel, A., Venugopalan, V.: Mechanisms of pulsed laser ablation of biological tissues. Chem. Rev. 103, 577–644 (2003)

    Article  Google Scholar 

  143. Voss, N.R., Gerstein, M., Steitz, T.A., Moore, P.B.: The geometry of the ribosomal polypeptide exit tunnel. J. Mol. Biol. 360, 893–906 (2006)

    Article  Google Scholar 

  144. Wales, D.J.: Energy landscapes: some new horizons. Curr. Opin. Struc. Biol. 20, 3–10 (2010)

    Article  Google Scholar 

  145. Wilson, D.N., Beckmann, R.: The ribosomal tunnel as a functional environment for nascent polypeptide folding and translational stalling. Curr. Opin. Struc. Biol. 21, 274–282 (2011)

    Article  Google Scholar 

  146. Wolynes, P.G.: Folding funnels and energy landscapes of larger proteins within the capillarity approximation. P. Natl. Acad. Sci. USA 94, 6170–6175 (1997)

    Article  ADS  Google Scholar 

  147. Wolynes, P.G.: Evolution, energy landscapes and the paradoxes of protein folding. Biochimie 119, 218–230 (2015)

    Article  Google Scholar 

  148. Zhang, G., Ignatova, Z.: Folding at the birth of the nascent chain: coordinating translation with co-translational folding. Curr. Opin. Struc. Biol. 21, 25–31 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

L.C. received national funds from FCT - Foundation for Science and Technology, Portugal, through the project UID/Multi/04326/2013. The author also acknowledges the Laboratory for Advanced Computing at University of Coimbra (http://www.lca.uc.pt) for providing HPC computing resources that have contributed to the research results reported within this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonor Cruzeiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cruzeiro, L. (2018). Protein Folding in Vivo: From Anfinsen Back to Levinthal. In: Archilla, J., Palmero, F., Lemos, M., Sánchez-Rey, B., Casado-Pascual, J. (eds) Nonlinear Systems, Vol. 2. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-72218-4_1

Download citation

Publish with us

Policies and ethics