Skip to main content

An Electrothermal Behavior Study of the Power PiN Diode

  • Chapter
  • First Online:
Real-Time Modelling and Processing for Communication Systems

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 29))

  • 611 Accesses

Abstract

The development of electrothermal models of power semiconductor devices is of great importance in the design of power systems, operating under extreme temperature conditions like applications dedicated to the exploitation of petroleum or geothermal resources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Green, M. A. (1990). Intrinsic concentration, effective density of state and effective mass in silicon. Journal of Applied Physics, 67(6), 2944–2954.

    Article  Google Scholar 

  2. Canali, C., Majni, G., Minder, R., & Ottaviani, G. (1975). Electron and hole drift velocity measurements in silicon and their empirical relation to electric field and temperature. IEEE Transactions on Electron Devices, ED-22, 1045–1047.

    Article  Google Scholar 

  3. Tyagi, M. S., & van Overstraeten, R. (1983). Minority carrier recombination in heavily-doped silicon. Solid-state Electronics, 26(6), 577–597.

    Article  Google Scholar 

  4. Klassen, D. B. M., Slotboom, J. W., & Graaf, H. C. (1992). Unified apparent band gap narrowing in n and p type silicon. Solid-state Electronics, 35(2), 125–129.

    Article  Google Scholar 

  5. Sze, S. M. (1981). Physics of semiconductor devices (868p). New York: Willey.

    Google Scholar 

  6. Ma, C. L., Lauritzen, P. O., & Sigg, J. (1997). Modeling of power diodes with the lumped-charge modeling technique. IEEE Transactions on power Electronics, 12(3), 398–405.

    Article  Google Scholar 

  7. Hernandez, L., Claudio, A., Rodriguez, M. A., Ponce, M., & Tapia, A. (May 2011). Physical modeling of SiC power diodes with empirical approximation. Journal of Power Electronics, 11(3), 381–388.

    Article  Google Scholar 

  8. Buiatti, G. M., Cappelluti, F., & Ghione, G. (July 2007). Physics-based PiN diode SPICE model for power-circuit simulation. IEEE Transactions on Industry Applications, 43(3), 911–919.

    Article  Google Scholar 

  9. Zhou, X., Wang, Y., Yue, R., Dai, G., & Li, J. (Dec 2017). Physics-based spice model on the dynamic characteristics of silicon carbide Schottky barrier diode. IET Power Electronics, 9(15), 2803–2807.

    Article  Google Scholar 

  10. Morel, H., Gamal, S. H., & Chante, J. P. (1994). State variable modeling of the power pin diode using an explicit approximation of semiconductor device equations: A novel approach. IEEE Transactions on Power Electronics, 9(1), 112–120.

    Article  Google Scholar 

  11. Garrab, H., Amimi, A., Ghedira, S., Besbes, K., Allard, B., & Morel, H. (2000). State space electrothermal modeling of the power PIN diode. In Proceeding Conference of Smart Systems and Devices, pp. 124–129.

    Google Scholar 

  12. Jedidi, A., Garrab, H., Morel, H., & Besbes, K. (2017). On the role of the wiring model of the switching cell circuit on The turn-off transient behavior of the PiN diode. Journal of Power Electronics, 17(2), 570–578.

    Article  Google Scholar 

  13. Garrab, H., Allard, B., Morel, H., Ammous, K., Ghedira, S., Ammimi, A., et al. (2005). On the extraction of PIN diode design parameters for validation of integrated power converter design. IEEE Transactions on Power Electronics, 20(3), 660–670.

    Article  Google Scholar 

  14. Jedidi, A., Garrab, H., Morel, H., & Besbes, K. (March 2015). A novel approach to extract the thyristor design parameters for designing of power electronic systems. IEEE Transactions on Industrial Electronics, 62(4), 2174–2183.

    Article  Google Scholar 

  15. Ammous, K., Allard, B., Brevet, O., Elomari, H., Bergone, D., Ligot, D., et al. (2000). Error in estimation of power switching losses based on electrical measurements. In PESC, (Vol. 1, pp. 212–218).

    Google Scholar 

  16. Carroll, E. I., Chokawali, R. S., Huard, R. J. (May, 1990). Accurate measurement of energy loss in power semi-conductors. In Proceedings of European International Intelligent Motion Conference (PCIM’90).

    Google Scholar 

  17. Ammous, K., Morel, H., & Ammous, A. (2010). Analysis of power switching losses accounting probe modeling. IEEE Transactions on Instrumentation and Measurement, 59(12), 3218–3226.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hatem Garrab .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jedidi, A., Garrab, H., Morel, H. (2018). An Electrothermal Behavior Study of the Power PiN Diode. In: Alam, M., Dghais, W., Chen, Y. (eds) Real-Time Modelling and Processing for Communication Systems. Lecture Notes in Networks and Systems, vol 29. Springer, Cham. https://doi.org/10.1007/978-3-319-72215-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72215-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72214-6

  • Online ISBN: 978-3-319-72215-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics