Skip to main content

Anodizing as an Industrial Process

  • Chapter
  • First Online:
The Metallurgy of Anodizing Aluminum

Abstract

This chapter provides a brief overview and summary of the steps that comprise the industrial process for anodizing aluminum, the various types of, and applications for, the anodic aluminum oxide (AAO). Images of various types of AAO, grown from various electrolytes under various industrial anodizing process conditions, are presented, highlighting the structural characteristics of the AAO. The unique, highly ordered cellular structure can be tuned by adjusting the process parameters, enabling engineering adjustment of the diameter of the central pore and the cell walls. The ionic nature of the central pore offers reaction sites for bonding with other molecules, providing a surface for dyeing, coloring, and bonding. AAO structural integrity provides a barrier to the external environment and corrosion protection over a fixed pH range; the size and residual stress within the AAO structure provide abrasion and wear resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Runge, J., & Pomis, A. (2000, June). Anodic oxide film formation: Relating mechanism to composition and structure. In Proceedings of the AESF SUR/FIN 2000 Technical Conference, AESF.

    Google Scholar 

  2. Workbook from “Anodizing Essentials”, one-day intensive course offered by the Aluminum Anodizers Council (AAC), (2016).

    Google Scholar 

  3. Brace, A. W. (2000). The technology of anodizing aluminium (3rd ed.). Modena, Italy: Interall Srl.

    Google Scholar 

  4. Runge, J. M. (2014). Anodizing for design and function. Journal of Materials Science and Nanotechnology, 1(1), S108.

    Google Scholar 

  5. Jones, D. A. (1996). Principles and prevention of corrosion (2nd ed.). Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  6. Zhu, H., Dahle, A. K., Zhang, X., & Couper, M. J. (2008). Effect of extrusion microstructure on formation of streaking defects on the surface of anodized aluminum extrusions. In Proceedings of the 18th Annual Anodizing Conference and Expo of the Aluminum Anodizers Council, San Francisco.

    Google Scholar 

  7. Wernick, S., Pinner, R., & Sheasby, P. G. (1987). The surface treatment and finishing of aluminum and its alloys, volume 1 (5th ed.). ASM International, Finishing Publications: Middlesex, England.

    Google Scholar 

  8. Masuda, H., & Fukuda, K. (1995). Ordered metal nanohole arrays made by two-step replications of honeycomb structures of anodic alumina. Science, 268, 9.

    Article  Google Scholar 

  9. Apple.com website.

  10. Han, C., & Runge, J. (2002). The future of anodizing. In Proceedings of the Annual Technical Conference and Exposition of the Aluminum Anodizers Council, Oakbrook, Illinois.

    Google Scholar 

  11. Military Specification (MIL)—A—8625F: Anodic Coatings for Aluminum and aluminum Alloys, (1993, Sept 10).

    Google Scholar 

  12. Arurault, L. (2008). Pilling-Bedworth ratio of thick anodic aluminium porous films prepared at high voltages in H 2 SO 4 based electrolyte. Leeds, UK: Maney Publishing, Institute of Metal Finishing.

    Google Scholar 

  13. Jessensky, O., Müller, F., & Gösele, U. (1998). Self-organized formation of hexagonal pore arrays in anodic alumina. Applied Physics Letters, 72(10), 1173–1175.

    Article  Google Scholar 

  14. Thompason, G. E. (1997). Porous anodic alumina: Fabrication, characterization and applications. Thin Solid Films, 297(1–2), 192–201.

    Article  Google Scholar 

  15. Nielsch, K., Choi, J., Schwirn, D., Wehrspohn, R., & Gösele, U. (2002). Self-ordering regimes of porous alumina: The 10% porosity rule. Nano Letters, 2(7), 677–680.

    Article  Google Scholar 

  16. Pilling, N. B., & Bedworth, R. E. (1923). The oxidation of metals at high temperatures. Journal of the Institute of Metals, 29, 529–591.

    Google Scholar 

  17. Gabe, D. R. (2000). Density values for anodic films on aluminium and some observations of pore morphology. Transactions of the Institute of Metal Finishing, 78(6), 207–209.

    Article  Google Scholar 

  18. Xu, C., & Gao, W. (2000). Pilling-Bedworth ratio for oxidation of alloys. Materials Research Innovations, 3, 231–235.

    Article  Google Scholar 

  19. Runge, J. (2007). Formation of porous anodic oxide finishes: A new approach and theory. In Conference Proceedings of Aluminium 2000, Florence.

    Google Scholar 

  20. Levendusky, et al. (2010, June 8). Corrosion resistant aluminum alloy substrates and methods of producing the same (US Patent No. 7,732,068).

    Google Scholar 

  21. Runge, J., Gilbert, A., Kriesch, G., & Pernick, J. (2006). Hybrid nanostructure of the anodic oxide for polymer bonding: A case study. In Proceedings of the AAC Annual Technical Conference and Exposition, Toronto, Canada.

    Google Scholar 

  22. Poinern, G., Ali, N., & Fawcett, D. (2011). Progress in nano-engineered anodic aluminum oxide membrane development. Materials, 4, 487–526.

    Article  Google Scholar 

  23. Le Coz, F., Aururault, L., & Datas, L. (2010). Chemical analysis of a single basic cell of porous anodic aluminum oxide templates. Materials Characterization, 61, 283–288.

    Article  Google Scholar 

  24. Runge, J. M. (2015). Enhancing anodic aluminum oxide for bonding applications. In Proceedings of the 24th Annual AAC Conference, San Diego, California.

    Google Scholar 

  25. Ducretet, M. E. (1875). Note sur un Rhéotome Liquide a Direction Constate, Fondé sur une Propriété nouvelle de L’Aluminium. Journal de Physique Théorique, 4(1), 84–85.

    Article  Google Scholar 

  26. Pollak, C. (1897). German Patent: “Elektrischer Flüssigkeitskondensator mit Aluminiumelektroden”, No. 92564, Granted 19 May, 1897.

    Google Scholar 

  27. Guntherschulze, A. (1906). Über das Verhalten von Aluminiumanoden. Annalen der Physik, 21, 929–954.

    Google Scholar 

  28. Sulka, G. D. (2008). Highly ordered anodic porous alumina formation by self-organized anodziing, section 1.2.1 types of anodic oxide film. In A. Eftekhari (Ed.), Nanostructured materials in electrochemistry (pp. 7–8). Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA. (Ch. 1).

    Google Scholar 

  29. Burgers, W. G. Claasen, A., & Zernike, J. (1932). Über die chemische Natur der Oxydschichten, welche sich bei anodischer Polarisation auf den Metallen Aluminium, Zirkon, Titan and Tantal bilden (pp. 593–603). Eindhoven, Holland: Naturkundig Laboratorium der N.V. Philips’ Gloeilampenfabriken.

    Google Scholar 

  30. VanGeel, W. C., & Schelen, B. J. J. (1957). Some properties of oxide layers produced on aluminium by electrolytic oxidation. Philips Research Reports, 12, 240–248.

    Google Scholar 

  31. Mott, W. R. (1904). Colloidal precipitation upon aluminium anodes. Electrochemical Industry, II(11), 444–447.

    Google Scholar 

  32. Murphy, J. F., & Michelson, C. E. (1961). Proceedings of a Conference on Anodising Aluminium at the University of Nottingham, Convened by the Aluminium Development Association of London, September 12–14, 1961 (pp. 83–95).

    Google Scholar 

  33. Paschanka, M., & Schneider, J. (2011). Origin of self-organization in porous anodic alumina films derived from analogy with Rayleigh-Bénard convection cells. Journal of Materials Chemistry, 21, 18761–18767.

    Article  Google Scholar 

  34. Thompson, G. E., & Wood, G. C. (1983). Anodic films on aluminium, section V. Barrier type anodic films. In J. C. Scully (Ed.), Corrosion: Aqueous processes and passive films, Treatise on materials science and technology (Vol. 23, pp. 230–254). London: Academic Press.

    Google Scholar 

  35. Evangelisti, F., Stiefel, M., Guseva, O., Patoveh-Nia, R., Hauert, R., Hack, E., et al. (2017). Electronic and structural characterization of barrier-type amorphous aluminium oxide. Electrochimica Acta, 224, 503–516.

    Article  Google Scholar 

  36. Brown, S. D., Kuna, K. J., & Van, T. B. (1971). Anodic spark deposition from aqueous solution of NaAlO2 and Na2SiO3. Journal of the American Ceramic Society, 54(8), 384–390.

    Article  Google Scholar 

  37. Runge-Marchese, J. M., & Nussbaum, T. (1998). New insights regarding the mechanism of spark anodization processes. In AESF SURFIN Proceedings (Vol. 6, pp. 531–540).

    Google Scholar 

  38. Dehnavi, V., Liu, X.-Y., Luan, B.-L., Shoesmith, D., & Rohani, S. (2014). Phase transformation in plasma electrolytic oxidation coatings on 6061 aluminum alloy. Surface & Coatings Technology, 251, 106–114.

    Article  Google Scholar 

  39. Bengough, G., & Stuart, J. (1923, August 2). Improved process of protecting surfaces of aluminium or aluminium alloys (British Patent 223,994).

    Google Scholar 

  40. Runge, J., & Pomis, A. (2002). Continued development in chrome-free anodic oxide finishes for aluminum: Evaluation of selected mechanical properties. In Proceedings of the American Electroplaters and Surface Finishers Society Aerospace/Aircraft Forum August 27–29, 2002.

    Google Scholar 

  41. Chesterfield, L., & Runge, J. (2013). Anodizing for design and function. In Proceedings of the 22nd Annual AAC Conference, Seattle, Washington.

    Google Scholar 

  42. Stumm, W., & Furrer, G. (1989). The dissolution of oxides and aluminum silicates; examples of surface-coordination-controlled kinetics. In W. Stumm (Ed.), Aquatic surface chemistry; chemical processes at the particle-water interface. Zurich: Wiley.

    Google Scholar 

  43. Chesterfield, L., & Runge, J. (2013). Connecting theory to practice: The science of successfully anodizing aluminum die castings. In Proceedings of the 19th Annual AAC Conference, Seattle, Washington.

    Google Scholar 

  44. Runge, J. (2012). Trace elements and their impact on surface finishing characteristics of aluminum extrusions. In Proceedings of ET 2012, Miami, FL.

    Google Scholar 

  45. Vieira Coelho, A.C. (2007). Specific surface area and structures of aluminas from fibrillar pseudo-boehmite. Revista Materia, 13(2), 329–341.

    Google Scholar 

  46. Hossain T. (2013). Unpublished work.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Runge, J.M. (2018). Anodizing as an Industrial Process. In: The Metallurgy of Anodizing Aluminum. Springer, Cham. https://doi.org/10.1007/978-3-319-72177-4_3

Download citation

Publish with us

Policies and ethics