Skip to main content

A Brief History of Aluminum and Its Alloys

  • Chapter
  • First Online:
The Metallurgy of Anodizing Aluminum

Abstract

The development of the aluminum industry originates in ancient times, with alchemic practices and corresponds with the path to modern science and technology. This chapter explores the path that lead to the discovery of elemental aluminum; from the first, naturally occurring elements, discovered in ancient times, through the various challenges posed by reducing new elements tightly bound in their mineral states, which proved to be the barrier to the discovery of aluminum until 1827, when it was reduced by Friedrich Wöhler. The history of the various interdisciplinary sciences, critical to the development of the industrial process for aluminum production, and the design and development of alloys for modern engineering applications, are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davis, J. R. (Ed.). (1993). ASM specialty handbook: Aluminum and aluminum alloys (pp. 3–18). Metals Park, OH: ASM International.

    Google Scholar 

  2. The history of the atom: The ancient Greeks. AAAS Science Net Links. Retrieved from sciencenetlinks.com/lessons/history-atom-ancient-greeks (2017)

  3. Partington, J. R. (1937). A short history of chemistry (1st ed.). New York: Dover.

    Google Scholar 

  4. Forbes, R. J. (1953). On the origin of alchemy. Chymia, 4, 1 – 11, JSTOR, Retrieved from www.jstor.org/stable/27757160

  5. Harms, W. (1994, January 6). Bronze Age source of tin discovered. The University of Chicago Chronicle, 13(9).

    Google Scholar 

  6. Doyle, D. (2009). Notoriety to respectability: A short history of arsenic prior to its present day use in haematology. British Journal of Haematology, 145, 309–317.

    Article  Google Scholar 

  7. Klein, C., Hurlbut, C. S., Jr., & Dana, J. D. (1985). Manual of minerology (20th ed.pp. 278–279). New York: Wiley.

    Google Scholar 

  8. Rostoker, W., & Bronson, B. (1990). Pre-industrial iron: Its technology and ethnology (Archeomaterials monograph). University Press.

    Google Scholar 

  9. Mehrer, H. (2007). Diffusion in solids, fundamentals, methods, materials, diffusion-controlled processes. New York: Springer.

    Google Scholar 

  10. Davy, H. (1808). The Bakerian Lecture on some new phenomena of chemical changes produced by electricity, particularly the decomposition of the fixed alkalies, and the exhibition of the new substances which constitute their bases; and on the general nature of alkaline bodies. Philosophical Transactions of the Royal Society of London, 98, 1–44. Part 1, Bulmer and Co. printers, London.

    Article  Google Scholar 

  11. Davis, K. (2010). Material review: Alumina (Al2O3). School of Doctoral Studies (European Union) Journal, 1, 109–114.

    Google Scholar 

  12. Pliny the Elder. Alumen and the several varieties of it, thirty-eight remedies. Naturalis Historia, Book 35, Chapter 52 (1991).

    Google Scholar 

  13. Skrabec, Q. (2006). The metallurgic age: The Victorian flowering of invention and industrial science, Ch. 8, Aluminum – Victorian Gold (pp. 120–129). Jefferson, NC: McFarland.

    Google Scholar 

  14. Linden S. J. (Ed.) (2003). The Alchemy reader: From Hermes Trismegistus to Isaac Newton, Introduction. Cambridge: Cambridge University Press.

    Google Scholar 

  15. Oldroyd, D. (1974). Some neo-platonic and stoic influences on mineralogy in the sixteenth and seventeenth centuries. In A. Debus (Ed.), Alchemy and early modern chemistry (p. 220). Huddersfield: Jeremy Mills Publishing for the Society for the History of Alchemy and Chemistry.

    Google Scholar 

  16. Pagel, W. (1982). Paracelsus: An introduction to philosophical medicine in the era of the renaissance, “The philosophy of Paracelsus” and “the elements” and the “three principles” (sulfur, salt and mercury): General considerations (2nd Rev. ed., pp. 50–62 and 82–98). Basel: Karger.

    Google Scholar 

  17. Ball, P. (2011). In retrospect: On the six-cornered snowflake. Nature, 480, 455.

    Google Scholar 

  18. Huygens, C. (1962, November 8). Traité de la Lumiere, Leyden, Pierre van der Aa (Parke-Bernet Galleries, Trans.). (Original work published 1690).

    Google Scholar 

  19. Shapiro, A. E. (1989). Huygens’ ‘Traite de la Lumiere’ and Newton’s ‘opticks’: Pursuing and eschewing hypotheses. Notes and Records of the Royal Society of London, 43(2), 223–247. Science and Civilization under William and Mary. JSTOR. Retrieved from www.jstor.org/stable/531384.

    Article  Google Scholar 

  20. Bressan, D. (2016, June). How biology pioneer Carl Linnaeus once tried to classify minerals. Forbes.

    Google Scholar 

  21. Linnaeus, C. (Carl von Linné). (1770, January 1). Systema Naturae per Regna Tria Naturae, Secundum Classes, Ordines, Genera, Species cum Characteribus, Differentiis, Synonymis, Locis (Vol. 3, pp. 12–35). Holmiae: Impensis, direct, Laurentii Salvii.

    Google Scholar 

  22. Linné, C. (Sir Charles Linné aka Linnaeus). (1806). A General System of the Mineral Kingdom, systematically divided into its several classes, orders, genera, species and varieties with their habitations, manners, economy, structure, and peculiarities (translated and augmented with a biography of Carl Linné by William Turton M.D., fellow of the Linnean Society, London, printed for Lackington, Allen and Co., pp. 209–226).

    Google Scholar 

  23. Haüy, par M. L’Abbé. (1822). Traité de Minérologie (2nd ed., Vol. 4, reviewed, corrected and augmented). Bachelier, Libraire, Successeur de Madame V. Coucier, Quai des Augustins.

    Google Scholar 

  24. Haüy, Par M. L’Abbé. (1822). Traité de Cristallographie, d’une application des principes de cette science a la determination des espêces minerals, including a novel method to measure the form of crystals in projection (Vol. 2). Bachelier et Huzaed, gendres et successeurs de Madame V. Coucier, Libraire pour les sciences, Rue du Jarunet, Saint-Andre-des-Arcs.

    Google Scholar 

  25. Authier, A. (2013). Early days of crystallography. Oxford, UK: Oxford University Press.

    Book  Google Scholar 

  26. Wollaston, W. H. (1813). The Bakerian Lecture: On the elementary particles of certain crystals. Philosophical Transactions of the Royal Society of London, 103, 51–63.

    Article  Google Scholar 

  27. Dalton, J. (1808). A new system of chemical philosophy, part one (Manchester: Printed pp. 209–218, by S. Russell, R. Bickerstaff, Eds., Strand, London).

    Google Scholar 

  28. Smith, R. A. (1856). Memoir of John Dalton and history of the atomic theory up to his time (pp. 230–246). London: H. Bailliere.

    Google Scholar 

  29. Wisniak, J. (2004). André-Marie Ampére. The chemical side. Educación Química, 15(2), 166–176.

    Google Scholar 

  30. Greenberg, A. (2007). From Alchemy to chemistry in picture and story (pp. 225–228). New Jersey: Wiley.

    Google Scholar 

  31. The supplement (1803 edition) to Encyclopedia Britannica 3rd edition, (1797). (Vol. 1, p. 225).

    Google Scholar 

  32. Donovan, A. (1996). Antoine Lavoisier: Science, administration and revolution. Cambridge: Cambridge University Press.

    Google Scholar 

  33. LaVoisier, A. (1789). Traité Élémentaire de Chemie (Vol. 1, p. 174). Paris: Cuchet.

    Google Scholar 

  34. Kerr, R. (1799). Elements of chemistry, in a new systematic order, containing all the modern discoveris (4th ed.). Mathew Carey: Edinburgh, Scotland.

    Google Scholar 

  35. Donovan, A. (2017, June 22). Antoine-Laurent Lavoisier. Encyclopedia Britannica, Inc. Retrieved from www.britannica.com/biography/Antoine-Laurent-Lavoisier

  36. Volta, A. (1800, June 26). On the electricity excited by the mere contact of conducting substances of different kinds. [Letter to Rt. Hon. Sir Joseph Banks and read at the Royal Society of London], pp. 403–431.

    Google Scholar 

  37. Desmond, K. (2016). Innovators in battery technology: Profiles of 95 influential electrochemists, Davy, H. (1778–1829) The “Great Battery” (p. 53). Jefferson, NC: McFarland.

    Google Scholar 

  38. Russel, C. (2003). Enterprise and electrolysis. London: The Royal Society of Chemistry.

    Google Scholar 

  39. Wetzels, W. D. (1968). Johann Wilhelm Ritter: Physik im Wirkungsfeld der Deutschen Romantik. Doctoral thesis, Princeton.

    Google Scholar 

  40. Davy, H. (1840). On some new phenomena of chemical changes produced by electricity, particularly the decomposition of the fixed alkalies, and exhibition of the new substances which constitute their bases; and on the general nature of alkaline bodies, first presented to the Royal Society in November, 1807. In J. Davy (Ed.), The collected works of Sir Humphry Davy (Vol. V, pp. 57–99). Bakerian Lectures and Miscellaneous Papers from 1806 to 1815. Cornhill, London: Smith, Elder.

    Google Scholar 

  41. Davy, H. (1812). Of metals; their primary combination with other undecompounded bodies, and with each other, Section 7. Aluminum, from elements of chemical philosophy, Part 1 (Vol. 1), Division 5, London. (Printed for J. Johnson and Co., St. Paul’s Church-Yard, p. 355).

    Google Scholar 

  42. Sutton, M. (2008, November). A clash of symbols. Historical profile of Jöns Jakob Berzelius. Chemistry World, 56–60.

    Google Scholar 

  43. Childs, P. E., (1998). From hydrogen to meitnerium: Naming the chemical elements, Section 2.5, Berzelius and the agreement on symbols. In K. J. Thurlow (Ed.), Chemical nomenclature, Table 2.1 (p. 36).

  44. Faraday, M. (1834). Experimental researches in electricity. Eighth Series. Philosophical Magazine, paragraph 918, 126. London: Taylor and Francis.

    Google Scholar 

  45. King, W. J. (1968). The development of electrical technology in the 19th century: Part 1. The electrochemical cell and the electromagnet. Bulletin 228: Contributions from the Museum of History and Technology (pp. 231–271). Cambridge: Harvard University.

    Google Scholar 

  46. Niaudet, A. (1890). Elementary treatise on electric batteries (L. M. Fishback, Trans. in French, 6th ed., pp. 13–15). New York: Wiley.

    Google Scholar 

  47. Ohm, G. S. (1827). Die Galvansiche Kette, Mathematisch bearbetitet. Berlin: T. H. Riemann.

    Book  Google Scholar 

  48. Blondel, C., & Wolff, B. (2013, January). Ampére lays the foundation of electrodynamics (September 1820–January 1821), ampere.cnrs.fr (French version, March 2009) (English translation).

    Google Scholar 

  49. Ampére, A.-M. (1826). Mémoire sur la théorie mathématique des phénomènes électrodynamiques uniquement déduite de l’experience (Memoir on the mathematical theory of electrodynamic phenomena, uniquely deduced from experience), Paris.

    Google Scholar 

  50. King, W. J. (1968). The development of electrical technology in the 19th century: Part 1. The electrochemical cell and the electromagnet. Bulletin 228: Contributions from the Museum of History and Technology (p. 241). Cambridge: Harvard University.

    Google Scholar 

  51. Faraday, M. (1839). Experimental researches in electricity. (Reprinted from Philosophical Transactions of 1831–1838, p. 304, paragraph 999, London: Taylor and Francis).

    Google Scholar 

  52. Desmond, K. (2016). Innovators in battery technology: Profiles of 95 influential electrochemists, Daniell, John Frederic (1790–1845), The constant cell (pp. 50–53). Jefferson, NC: McFarland.

    Google Scholar 

  53. Wheatstone, C. (1879). The scientific papers, as published by the Physical Society of London. An account of several new Instruments and processes for determining the constants of a voltaic circuit (pp. 97–132). London: Taylor and Francis.

    Google Scholar 

  54. Bowers, B. (2001). Sir Charles Wheatstone FRS: 1802-1875 (pp. 101–114). London: The Institution of Electrical Engineers.

    Book  Google Scholar 

  55. Minet, A. (1905). The production of aluminium and its industrial use (L. Waldo, Trans, 1st ed.). New York: Wiley.

    Google Scholar 

  56. Berthier, P. (1821). Analyse de l’alumine hydraté des Beaux, department des Bouches-du-Rhóne. Annales des Mines, 1st series, 6, 531–534.

    Google Scholar 

  57. The Aluminum Association. (2017). Alumina refining, the bayer process. Retrieved from info@aluminum.org

    Google Scholar 

  58. Wöhler, F. (1827). XI. Ueber das Aluminium. Annal d. Physik, B.87, St. 1, J. St.9, 146–161.

    Google Scholar 

  59. Wisniak, J. (2004). Henri Étienne Sainte-Claire Deville: A physician turned metallurgist. Journal of Materials Engineering and Performance, 13(2), 117–128.

    Article  Google Scholar 

  60. Price, J. A. (1886, March). Aluminum. Scientific American Supplement, 21(351), Logo 8471, text 8482-3.

    Google Scholar 

  61. Authier, A. (2013). The birth and rise of the space-lattice concept, Section 12.11: A. Bravais “Systèmes forms par des point distribués régulièrement sur un plan ou dans l’espace, 1848”, Chapter 12, The early days of crystallography. Oxford: Oxford University Press.

    Google Scholar 

  62. Barlow, W. (1883). The probable nature of the internal symmetry of crystals. Nature, 29, 205–207.

    Article  Google Scholar 

  63. Assmus, A. (1995). Early history of X-rays. Beam line. SLAC National Accelerator Laboratory, Stanford, CA, 10–24.

    Google Scholar 

  64. Eckert, M. (2012). Max von Laue and the discovery of X-ray diffraction in 1912. Annalen der Physik, Berlin, 524(5), A83–A85.

    Article  Google Scholar 

  65. Bragg, W. L. (1922, September 6). The diffraction of X-rays by crystals. Nobel Lecture.

    Google Scholar 

  66. Morachevskii, A. G. (2006). Henri Étienne Sainte-Claire Deville (To 150th anniversary of the development of the first industrial method for production of aluminum). Russian Journal of Applied Chemistry, 79(10), 1731–1735.

    Article  Google Scholar 

  67. Polmear, I. (2006). Production of aluminum, Section 1.2. Chapter 1, Light alloys, Traditional alloys to nanocrystals (4th ed.). Butterworth-Heinemann, an imprint of Elsevier, Oxford, UK.

    Google Scholar 

  68. The history of the aluminium industry. Retrieved from Aluminiumleader.com

  69. Deville, H. de L’Aluminium. Taschenbuch (Replica of the book originally published in 1859).

    Google Scholar 

  70. Constellium. (2017). Who we are. Company timeline. Retrieved June 15, 2017, from constellium.com

  71. Verne, J. (1886). From the earth to the moon, Chapter 7, The hymn of the cannon-ball (John W, American Translation). New York: Lovell.

    Google Scholar 

  72. King, W. J. (1963). The development of electrical technology in the 19th century: Part 3. The early arc light and generator. Bulletin 228: Contributions from the Museum of History and Technology (pp. 334–406). Cambridge: Harvard University.

    Google Scholar 

  73. Binczewski, G. (1995). The point of a monument: A history of the aluminum cap of the Washington Monument. Journal of Management, 47(11), 20–25.

    Google Scholar 

  74. Alcoa. (2017). Who we are/History/Timeline. Retrieved from alcoa.com. Copyright 2017.

  75. Plunkert, P., & Jones, T. (1999). Metal prices in the United States through 1998 (A compilation published by the US Department of the Interior, US Geological Survey, pp. 1–4), Reston, VA: US Government Printing Office.

    Google Scholar 

  76. UC Rusal. (2017). All about aluminium, history. Retrieved from Aluminiumleader.com.

  77. Staley, J. T. (1989). Aluminum alloys—Contemporary research and applications, Treatise on materials science and technology, “Overview” in part 1: Historical background (Vol. 31, p. 28). San Diego, CA: Academic Press.

    Google Scholar 

  78. Lake, E.F. (1913). The extrusion process, The extrusion of metals (pp. 3–27). New York: The Industrial Press, Publishers of Machinery.

    Google Scholar 

  79. Gautschi, & Jequier. (1905, March 25). Papier Metallique (Swiss Patent No. 33290).

    Google Scholar 

  80. The Aluminum Association. (2017). Foil and packaging. Retrieved from www.aluminum.org

  81. Smith, G.D. (2003). From monopoly to competition: The transformations of Alcoa, 1888–1986, Chapter 3: Building a big business (pp. 77–131). Cambridge: Cambridge University Press.

    Google Scholar 

  82. Sennott, R. S. (Ed.) (2004). Encyclopedia of twentieth century architecture (A–F, aluminum, Vol. 1, p. 38). New York: Taylor and Francis.

    Google Scholar 

  83. Sheller, M. (2014). Aluminum dreams, the making of light modernity. Cambridge, MA: Massachusetts Institute of Technology Press.

    Google Scholar 

  84. Jester, T. C. (Ed.). (2014). Twentieth century building materials, history and conservation. Los Angeles, CA: Getty Conservation Institute.

    Google Scholar 

  85. La Trace, A. J. (2015, March 27). Less is more: Mapping Mies van der Rohe’s career in Chicago. Retreived from chicago.curbed.com

  86. Sanders, R. E. (2001). Technology innovation in aluminum products. Journal of Management, 53(2), 21–25.

    Google Scholar 

  87. Alcan Marine. Aluminium, the marine metal. Historical Review, 10–13 (2005).

    Google Scholar 

  88. The Aluminum World. (1895, October). The Aluminum Yacht Won! 2(1), 1–2.

    Google Scholar 

  89. Hobson, R. P. (1897). Notes on the yacht defender and the use of aluminum in marine construction. In Proceedings of the US Naval Institute (pp. 523–562).

    Google Scholar 

  90. Sanders, R. E., Hollinshead, P. A., & Simielli, E. A. (2004). Industrial development of non-heat treatable aluminum alloys. Metals Forum, 28, 53–64.

    Google Scholar 

  91. Genta, G., Morello, L., Cavallino, F., & Filtri, L. (2014). The motor car: Past, present and future, Ch. 4Powertrain, section 4.41 electric cars (p. 144). New York: Springer.

    Google Scholar 

  92. Vaughan, D. (2011, July). Pierce arrow. Retrieved from Conceptcarz.com

  93. Brown, L. (2015). Exploring the opportunity for anodizing in automotive bonding. In Proceedings of the Aluminum Anodizers Council, San Diego.

    Google Scholar 

  94. Skillingberg, M. (2007). Aluminum applications in the rail industry. Light Metal Age, 65(5), 1–5.

    Google Scholar 

  95. Skrabec, Q. (2017). Aluminum in America: A history, Ch. 7. Metallurgical wars and monopoly (p. 68). Jefferson, NC: McFarland.

    Google Scholar 

  96. Skrabec, Q. (2017). Aluminum in America: A history, Ch. 13: The war and the new aluminum industry (pp. 134–147). Jefferson, NC: McFarland.

    Google Scholar 

  97. Polmear, I. (2004). Aluminium alloys—A century of age hardening. Materials Forum, 28, 1–14.

    Google Scholar 

  98. Kaufman, J. G. (2008). Properties of aluminum alloys: Fatigue data and the effects of temperature, product form and processing. Materials Park, OH: ASM International.

    Google Scholar 

  99. Mondolfo, L. F. (1976). Aluminum alloys, structure and properties, Chapter 4-2: Aluminum-silicon and aluminum-magneisum silicide alloys (pp. 759–806). London: Butterworths.

    Google Scholar 

  100. Simons, G. (2013). Comet! The world’s first jet airliner, Ch. 8: Disasters—Investigation—Inquiry (pp. 125–167). Barnsley: Pen and Sword Aviation.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Runge, J.M. (2018). A Brief History of Aluminum and Its Alloys. In: The Metallurgy of Anodizing Aluminum. Springer, Cham. https://doi.org/10.1007/978-3-319-72177-4_1

Download citation

Publish with us

Policies and ethics