Skip to main content

Techno-economic Analysis of Energy Recovery from Plastic Waste

  • Conference paper
  • First Online:
9th International Symposium on High-Temperature Metallurgical Processing (TMS 2018)

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Included in the following conference series:

  • 3396 Accesses

Abstract

Treatment of polymer-based wastes has a tremendous potential for generating alternative energy, reducing greenhouse gas emissions, creating economic and environmental benefits, and achieving a sustainable development of the energy sector. During the past few decades, plastic waste generation increased at a greater rate than the population, with the move towards single-use products. Also with raising the cost of oil-based products, greater emphasis should be placed upon the usage of plastic/polymer in the waste stream as a supplementary source of fuel. This study presents a techno-economic analysis of the recycling potential of plastic waste in Australia by evaluating the possible use of these wastes as a reductant in steel making incinerators. The study tries to shed light on a possible cost effective alternative route in the smart treatment of waste plastic in Australia .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tabasová A, Kropáč J, Kermes V, Nemet A, Stehlík P (2012) Energy 44:146

    Article  Google Scholar 

  2. Bujak JW (2015) Energy 90:1721

    Article  Google Scholar 

  3. Miranda M, Cabrita I, Pinto F, Gulyurtlu I (2013) Energy 58:270

    Article  CAS  Google Scholar 

  4. Leung DYC, Wang CL (1999) Energy Fuels 13:421

    Article  CAS  Google Scholar 

  5. Chiarioni A, Reverberi AP, Fabiano B, Dovì VG (2006) Energy 31:2460

    Article  CAS  Google Scholar 

  6. Mani M, Nagarajan G, Sampath S (2011) Energy 36:212

    Article  CAS  Google Scholar 

  7. Li AM, Li XD, Li SQ, Ren Y, Shang N, Chi Y, Yan JH, Cen KF (1999) Energy 24:209

    Article  CAS  Google Scholar 

  8. Wallman PH, Thorsness CB, Winter JD (1998) Energy 23:271

    Article  CAS  Google Scholar 

  9. Dai X, Yin X, Wu C, Zhang W, Chen Y (2001) Energy 26:385

    Article  CAS  Google Scholar 

  10. Singhabhandhu A, Tezuka T (2010) Energy 35:2544

    Article  CAS  Google Scholar 

  11. Mani M, Nagarajan G (2009) Energy 34:1617

    Article  CAS  Google Scholar 

  12. Kovács T, Zsély IG, Kramarics Á, Turányi T (2007) J Anal Appl Pyrol 79:252

    Article  CAS  Google Scholar 

  13. Conesa JA, Marcilla A, Font R, Caballero JA (1996) J Anal Appl Pyrol 36:1

    Article  CAS  Google Scholar 

  14. Lee JS, Kim SD (1996) Energy 21:343

    Article  CAS  Google Scholar 

  15. Ghodrat M, Rhamdhani MA, Khaliq A, Brooks G, Samali B, Mater J (2017) Cycles Waste Manag 1

    Google Scholar 

  16. Zhang L, Drelich JW, Neelameggham NR, Guillen DP, Haque N, Zhu J, Sun Z, Wang T, Howarter JA, Tesfaye F (2017) Energy technology 2017: carbon dioxide management and other technologies (Springer 2017)

    Google Scholar 

  17. P. and C. I. A. (PACIA), (2007)

    Google Scholar 

  18. Zhao X, Jiang G, Li A, Wang L (2016) Waste Manag 48:604

    Article  Google Scholar 

  19. Zheng L, Song J, Li C, Gao Y, Geng P, Qu B, Lin L (2014) Renew Sustain Energy Rev 36:135

    Article  Google Scholar 

  20. Sahajwalla V, Zaharia M, Kongkarat S, Khanna R, Rahman M, Saha-Chaudhury N, O’Kane P, Dicker J, Skidmore C, Knights D (2011) Energy Fuels 26:58

    Article  CAS  Google Scholar 

  21. Dankwah JR, Koshy P, Saha-Chaudhury NM, O’Kane P, Skidmore C, Knights D, Sahajwalla V (2011) ISIJ Int 51:498

    Article  CAS  Google Scholar 

  22. Massarutto A (2015) Waste Manag 37:45

    Article  Google Scholar 

  23. Jamasb T, Nepal R (2010) Resour Conserv Recycl 54:1341

    Article  Google Scholar 

  24. Leme MMV, Rocha MH, Lora EES, Venturini OJ, Lopes BM, Ferreira CH (2014) Resour Conserv Recycl 87:8

    Article  Google Scholar 

  25. Lim S-Y, Lim K-M, Yoo S-H (2014) Renew Sustain Energy Rev 34:588

    Article  Google Scholar 

  26. Tsai W-T, Kuo K-C (2010) Energy 35:4824

    Article  CAS  Google Scholar 

  27. Tan S, Hashim H, Lee C, Taib MR, Yan J (2014) Energy Procedia 61:704

    Article  Google Scholar 

  28. Michael T (2013) Waste Energy Convers Technol 15

    Google Scholar 

  29. Pavlas M, Touš M, Bébar L, Stehlík P (2010) Appl Therm Eng 30:2326

    Article  CAS  Google Scholar 

  30. Ghodrat M, Rhamdhani MA, Brooks G, Rashidi M, Samali B (n.d.) Environ Dev

    Google Scholar 

  31. Bale CW, Bélisle E, Chartrand P, Decterov SA, Eriksson G, Hack K, Jung I-H, Kang Y-B, Melançon J, Pelton AD, Robelin C, Petersen S (2009) Calphad 33:295

    Article  CAS  Google Scholar 

  32. Ghodrat M, Rhamdhani MA, Brooks G, Masood S, Corder G (2016) J Clean Prod

    Google Scholar 

  33. Rosen MA (2002) Exergy. Int J 2:218

    Google Scholar 

  34. Saidur R, Rahim NA, Ping HW, Jahirul MI, Mekhilef S, Masjuki HH (2009) Energy Policy 37:3650

    Article  Google Scholar 

  35. Lozano MA, Valero A (1993) Energy 18:939

    Article  Google Scholar 

  36. Li F, Tolley DL, Trans IEEE (2007) Power Syst 22:1683

    Article  Google Scholar 

  37. Bale CW, Chartrand P, Degterov SA, Eriksson G, Hack K, Ben Mahfoud R, Melançon J, Pelton AD, Petersen S (2002) Calphad 26:189

    Article  CAS  Google Scholar 

  38. Bank D (2014) Glob Commod Bulk Mater Ind Met Spec Report. Dtsch Bank AG/London. Recuper. http://etf.Dtsch.com/DEU/DEU/Download/Research-Commodities/6b19f7f8-a24a-495b-b85c-c9519a77e5e8/Special-Report.Pdf

  39. Hopewell J, Dvorak R, Kosior E (2009) Philos Trans R Soc Lond B Biol Sci 364:2115

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Ghodrat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ghodrat, M., Samali, B. (2018). Techno-economic Analysis of Energy Recovery from Plastic Waste. In: Hwang, JY., et al. 9th International Symposium on High-Temperature Metallurgical Processing. TMS 2018. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-319-72138-5_2

Download citation

Publish with us

Policies and ethics