Skip to main content

Lignocellulose Degradation by Termites

  • Chapter
  • First Online:
Termites and Sustainable Management

Part of the book series: Sustainability in Plant and Crop Protection ((SUPP))

Abstract

Host and symbiont enzymes are involved in lignocellulose processing by termites. A brief description of the structure of the main components of the plant cell wall and the most relevant degrading enzymes is presented. This chapter focuses on the dual cellulolytic system in lower and higher termites and provides an update on the current research strategies through culture-dependent and culture-independent “-omic” approaches. Significance for biofuel production and future perspectives are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bastien, G., Arnal, G., Bozonnet, S., Laquerre, S., Ferreira, F., Fauré, R., Henrissat, B., Lefèvre, F., Robo, P., Bouchez, O., Noirot, C., Dumond, C., & O’Donohue, M. (2013). Mining for hemicellulases in the fungus-growing termite Pseudacanthotermes militaris using functional metagenomics. Biotechnology for Biofuels, 6, 78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bauwens, J., Millet, C., Tarayre, C., Brasseur, C., Destain, J., Vandenbol, M., Thonart, P., Portetelle, D., De Pauw, E., Haubruge, E., & Francis, F. (2013). Symbiont diversity in Reticulitermes santonensis: Investigation strategy through proteomics. Environmental Entomology, 42, 882–887.

    Article  CAS  PubMed  Google Scholar 

  • Ben Guerrero, E., Arneodo, J., Campanha, R. B., Oliveira, P. A., Labate, M. T. V., Regiani, T., Campos, E., Cataldi, A., Labate, C. A., Rodrigues, C. M., & Talia, P. (2015). Prospection and evaluation of (hemi) cellulolytic enzymes using untreated and pretreated biomass in two Argentinean native termites. PLoS One, 10, e0136573.

    Article  PubMed  PubMed Central  Google Scholar 

  • Benjamino, J., & Graf, J. (2016). Characterization of the core and caste-specific microbiota in the termite, Reticulitermes flavipes. Frontiers in Microbiology, 7, 171.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bettiga, M., Bengtsson, O., Hahn-Hagerdal, B., & Gorwa-Grauslund, M. F. (2009). Arabinose and xylose fermentation by recombinant Saccharomyces cerevisiae expressing a fungal pentose utilization pathway. Microbial Cell Factories, 8, 40. https://doi.org/10.1186/1475-2859-8-40.

    Article  PubMed  PubMed Central  Google Scholar 

  • Boucias, D. G., Cai, Y., Sun, Y., Lietze, V. U., Sen, R., Raychoudhury, R., & Scharf, M. E. (2013). The hindgut lumen prokaryotic microbiota of the termite Reticulitermes flavipes and its responses to dietary lignocellulose composition. Molecular Ecology, 22, 1836–1853.

    Article  CAS  PubMed  Google Scholar 

  • Brennan, Y., Callen, W. N., Christoffersen, L., Dupree, P., Goubet, F., Healey, S., Hernandez, M., Keller, M., Li, K., Palackal, N., Sittenfeld, A., Tamayo, G., Wells, S., Hazlewood, G. P., Mathur, E. J., Short, J. M., Robertson, D. E., & Steer, B. A. (2004). Unusual microbial xylanases from insect guts. Applied and Environmental Microbiology, 70, 3609–3617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brune, A. (2014). Symbiotic digestion of lignocellulose in termite guts. Nature Reviews Microbiology, 12, 681–180.

    Article  Google Scholar 

  • Bugg, T. D. H., Ahmad, M., Hardiman, E. M., & Singh, R. (2011). The emerging role for bacteria in lignin degradation and bioproduct formation. Current Opinion in Biotechnology, 22, 394–400.

    Article  CAS  PubMed  Google Scholar 

  • Burnum, K. E., Callister, S. J., Nicora, C. D., Purvine, S. O., Hugenholtz, P., Warnecke, F., Scheffrahn, R. H., Smith, R. D., & Lipton, M. S. (2011). Proteome insights into the symbiotic relationship between a captive colony of Nasutitermes corniger and its hindgut microbiome. The ISME Journal, 5, 161–164.

    Article  CAS  PubMed  Google Scholar 

  • Butera, G., Ferraro, C., Alonzo, G., Colazza, S., & Quatrini, P. (2016). The gut microbiota of the wood-feeding termite Reticulitermes lucifugus (Isoptera; Rhinotermitidae). Annals of Microbiology, 66, 253–260.

    Article  CAS  Google Scholar 

  • Chandrasekharaiah, M., Thulasi, A., Bagath, M., Kumar, D. P., Santosh, S. S., Palanivel, C., Jose, V. L., & Sampath, K. T. (2011). Molecular cloning, expression and characterization of a novel feruloyl esterase enzyme from the symbionts of termite (Coptotermes formosanus) gut. BMB Reports, 44, 52–57.

    Article  CAS  PubMed  Google Scholar 

  • Coy, M. R., Salem, T. Z., Denton, J. S., Kovaleva, E. S., Liu, Z., Barber, D. S., Campbell, J. H., Davis, D. C., Buchman, G. W., Boucias, D. G., & Scharf, M. E. (2010). Phenol-oxidizing laccases from the termite gut. Insect Biochemistry and Molecular Biology, 40, 723–732.

    Article  CAS  PubMed  Google Scholar 

  • Do, T. H., Nguyen, T. T., Nguyen, T. N., Le, Q. G., Nguyen, C., Kimura, K., & Truong, N. H. (2014). Mining biomass-degrading genes through Illumina-based de novo sequencing and metagenomic analysis of free-living bacteria in the gut of the lower termite Coptotermes gestroi harvested in Vietnam. Journal of Bioscience and Bioengineering, 6, 665–671.

    Article  Google Scholar 

  • Fujita, A., Hojo, M., Aoyagi, T., Hayashi, Y., Arakawa, G., Tokuda, G., & Watanabe, H. (2010). Details of the digestive system in the midgut of Coptotermes formosanus Shiraki. Journal of Wood Science, 56, 222–226.

    Article  CAS  Google Scholar 

  • Geib, S. M., Filley, T. R., Hatcher, P. G., Hoover, K., Carlson, J. E., Jimenez-Gasco, M. M., Nakagawa-Izumi, A., Sleighter, R. L., & Tien, M. (2008). Lignin degradation in wood-feeding insects. Proceedings of the National Academy of Sciences, 105, 12932–12937.

    Article  CAS  Google Scholar 

  • Han, Y. J., & Chen, H. Z. (2010). Synergism between hydrophobic proteins of corn stover and cellulase in lignocellulose hydrolysis. Biochemical Engineering Journal, 48, 218–224.

    Article  CAS  Google Scholar 

  • Han, Q., Liu, N., Robinson, H., Cao, L., Qian, C., Wang, Q., Xie, L., Ding, H., Wang, Q., Huang, Y., Li, J., & Zhou, Z. (2013). Biochemical characterization and crystal structure of a GH10 xylanase from termite gut bacteria reveal a novel structural feature and significance of its bacterial Ig-like domain. Biotechnology and Bioengineering, 110, 3093–3103.

    Article  CAS  PubMed  Google Scholar 

  • He, S., Ivanova, N., Kirton, E., Allgaier, M., Bergin, C., Scheffrahn, R. H., Kyrpides, N. C., Warnecke, F., Tringe, S. G., & Hugenholtz, P. (2013). Comparative metagenomic and metatranscriptomic analysis of hindgut paunch microbiota in wood- and dung-feeding higher termites. PLoS One, 8, e61126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henrissat, B., & Bairoch, A. (1993). New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. The Biochemical Journal, 293, 781–788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hojo, M., Maekawa, K., Saitoh, S., Shigenobu, S., Miura, T., Hayashi, Y., Tokuda, G., & Maekawa, H. (2012). Exploration and characterization of genes involved in the synthesis of diterpene defence secretion in nasute termite soldiers. Insect Molecular Biology, 21, 545–557.

    Article  CAS  PubMed  Google Scholar 

  • Hongoh, Y. (2011). Toward the functional analysis of uncultivable, symbiotic microorganisms in the termite gut. Cellular and Molecular Life Sciences, 68, 1311–1325.

    Article  CAS  PubMed  Google Scholar 

  • Huang, Q., Sun, P., Zhou, X., Lei, C., Huang, Q., Sun, P., Zhou, X., & Lei, C. (2012). Characterization of head transcriptome and analysis of gene expression involved in caste differentiation and aggression in Odontotermes formosanus (Shiraki). PLoS One, 7, e50383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Husseneder, C., Simms, D. M., Aluko, G. K., & Delatte, J. (2010a). Colony breeding system influences cuticular bacterial load of Formosan subterranean termite workers. Environmental Entomology, 39, 1715–1723.

    Article  PubMed  Google Scholar 

  • Husseneder, C., Ho, H. Y., & Blackwell, M. (2010b). Comparison of the Bacterial symbiont composition of the Formosan subterranean termite from its native and introduced range. Open Microbiology Journal, 4, 53–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Husseneder, C., McGregor, C., Lang, R. P., Collier, R., & Delatte, J. (2012). Transcriptome profiling of female alates and egg-laying queens of the Formosan subterranean termite. Comparative Biochemistry and Physiology, 7, 14–27.

    CAS  PubMed  Google Scholar 

  • Ishikawa, Y., Okada, Y., Ishikawa, A., Miyakawa, H., Koshikawa, S., & Miura, T. (2010). Gene expression changes during caste-specific neuronal development in the damp-wood termite Hodotermopsis sjostedti. BMC Genomics, 11, 314.

    Article  PubMed  PubMed Central  Google Scholar 

  • Isikgor, F. H., & Becer, C. R. (2015). Lignocellulosic biomass: A sustainable platform for the production of bio-based chemicals and polymers. Polymer Chemistry, 6, 4497–4559.

    Article  CAS  Google Scholar 

  • Johjima, T., Taprab, Y., Noparatnaraporn, N., Kudo, T., & Ohkuma, M. (2006). Large-scale identification of transcripts expressed in a symbiotic fungus (Termitomyces) during plant biomass degradation. Applied Microbiology and Biotechnology, 73, 195–203.

    Article  CAS  PubMed  Google Scholar 

  • Ke, J., Laskar, D. D., Singh, D., & Chen, S. (2011). In situ lignocellulosic unlocking mechanism for carbohydrate hydrolysis in termites: Crucial lignin modification. Biotechnology for Biofuels, 4, 17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ke, J., Singh, D., & Chen, S. (2012). Metabolism of polycyclic aromatic hydrocarbons by the wood-feeding termite Coptotermes formosanus (Shiraki). Journal of Agricultural and Food Chemistry, 60, 1788–1797.

    Article  CAS  PubMed  Google Scholar 

  • Ke, J., Laskar, D. D., & Chen, S. (2013). Tetramethylammonium hydroxide (TMAH) thermochemolysis for probing in situ softwood lignin modification in each gut segment of the termite. Journal of Agricultural and Food Chemistry, 61, 1299–1308.

    Article  CAS  PubMed  Google Scholar 

  • Kohler, T., Dietrich, C., Scheffrahn, R. H., & Brune, A. (2012). High-resolution analysis of gut environment and bacterial microbiota reveals functional compartmentation of the gut in wood-feeding higher termites (Nasutitermes sp.) Applied and Environmental Microbiology, 78, 4691–4701.

    Article  PubMed  PubMed Central  Google Scholar 

  • Konig, H., Li, L., & Frohlich, J. (2013). The cellulolytic system of the termite gut. Applied Microbiology and Biotechnology, 97, 7943–7962.

    Article  PubMed  Google Scholar 

  • Leonardo, F. C., da Cunha, A. F., da Silva, M. J., Carazzolle, M. F., Costa-Leonardo, A. M., Costa, F. F., & Pereira, G. A. (2011). Analysis of the workers head transcriptome of the Asian subterranean termite, Coptotermes gestroi. Bulletin of Entomological Research, 101, 383–391.

    Article  CAS  PubMed  Google Scholar 

  • Liu, N., Xing, Y., Zhang, M., Xie, L., Wang, Q., Huang, Y., Zhou, X., Wang, S., & Zhou, Z. (2011). Microbiome of fungus-growing termites: A new reservoir for lignocellulase genes. Applied and Environmental Microbiology, 77, 48–56.

    Article  CAS  PubMed  Google Scholar 

  • Liu, N., Zhang, L., Zhou, H., Zhang, M., Yan, X., Wang, Q., Long, Y., Xie, L., Wang, S., Huang, Y., & Zhou, Z. (2013). Metagenomic insights into metabolic capacities of the gut microbiota in a fungus-cultivating termite (Odontotermes yunnanensis). PLoS One, 8, e69184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lo, N., & Eggleton, P. (2011). Termite phylogenetics and co-cladogenesis with symbionts. In D. E. Bignell, Y. Roisin, & N. Lo (Eds.), Biology of termites: A modern synthesis (pp. 27–50). Dordrecht: Springer.

    Google Scholar 

  • Lo, N., Tokuda, G., & Watanabe, H. (2011). Evolution and function of endogenous termite cellulases. In D. E. Bignell, Y. Roisin, & N. Lo (Eds.), Biology of termites: A modern synthesis (pp. 51–67). Dordrecht: Springer.

    Google Scholar 

  • Matteotti, C., Haubruge, E., Thonart, P., Francis, F., De Pauw, E., Portetelle, D., & Vandenbol, M. (2011). Characterization of a new β-glucosidase/β-xylosidase from the gut microbiota of the termite (Reticulitermes santonensis). FEMS Microbiology Letters, 314, 147–157.

    Article  CAS  PubMed  Google Scholar 

  • Matteotti, C., Bauwens, J., Brasseur, C., Tarayre, C., Thonart, P., Destain, J., Francis, F., Haubruge, E., De Pauw, E., Portetelle, D., & Vandenbol, M. (2012). Identification and characterization of a new xylanase from Gram-positive bacteria isolated from termite gut (Reticulitermes santonensis). Protein Expression and Purification, 83, 117–127.

    Article  CAS  PubMed  Google Scholar 

  • Merino, S. T., & Cherry, J. (2007). Progress and challenges in enzyme development for biomass utilization. Advances in Biochemical Engineering/Biotechnology, 108, 95–120.

    Article  CAS  PubMed  Google Scholar 

  • Mikaelyan, A., Dietrich, C., Kohler, T., Poulsen, M., Sillam-Dusses, D., & Brune, A. (2015). Diet is the primary determinant of bacterial community structure in the guts of higher termites. Molecular Ecology, 24, 5284–5295.

    Article  CAS  PubMed  Google Scholar 

  • Murashima, K., Kosugi, A., & Doi, R. H. (2002). Thermostabilization of cellulosomal endoglucanase EngB from Clostridium cellulovorans by in vitro DNA recombination with non-cellulosomal endoglucanase EngD. Molecular Microbiology, 45, 617–626.

    Article  CAS  PubMed  Google Scholar 

  • Ni, J., & Tokuda, G. (2013). Lignocellulose-degrading enzymes from termites and their symbiotic microbiota. Biotechnology Advances, 31, 838–850.

    Article  CAS  PubMed  Google Scholar 

  • Nimchua, T., Thongaram, T., Uengwetwanit, T., Pongpattanakitshote, S., & Eurwilaichitr, L. (2012). Metagenomic analysis of novel lignocellulose-degrading enzymes from higher termite guts inhabiting microbes. Journal of Microbiology and Biotechnology, 22, 462–469.

    Article  CAS  PubMed  Google Scholar 

  • Ohkuma, M. (2003). Termite symbiotic systems: Efficient biorecycling of lignocellulose. Applied Microbiology and Biotechnology, 61, 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Otani, S., Mikaelyan, A., Nobre, T., Hansen, L. H., Kone, N. A., Sorensen, S. J., AD, K., Boomsma, J. J., Brune, A., & Poulsen, M. (2014). Identifying the core microbial community in the gut of fungus-growing termites. Molecular Ecology, 23, 4631–4644.

    Article  CAS  PubMed  Google Scholar 

  • Placido, J., & Capareda, S. (2015). Ligninolytic enzymes: A biotechnological alternative for bioethanol production. Bioresource Bioprocess, 2, 23. https://doi.org/10.1186/s40643-015-0049-5.

    Article  Google Scholar 

  • Rajarapu, S. P., Shreve, J. T., Bhide, K. P., Thimmapuram, J., & Scharf, M. E. (2015). Metatranscriptomic profiles of Eastern subterranean termites, Reticulitermes flavipes (Kollar) fed on second generation feedstocks. BMC Genomics, 16, 332. https://doi.org/10.1186/s12864-015-1502-8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rashamuse, K., Ronneburg, T., Sanyika, W., Mathiba, K., Mmutlane, E., & Brady, D. (2014). Metagenomic mining of feruloyl esterases from termite enteric flora. Applied Microbiology and Biotechnology, 98, 727–737.

    Article  CAS  PubMed  Google Scholar 

  • Rosenthal, A. Z., Matson, E. G., Eldar, A., & Leadbetter, J. R. (2011). RNA-seq reveals cooperative metabolic interactions between two termite-gut spirochete species in co-culture. The ISME Journal, 5, 1133–1142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanyika, T. W., Rashamuse, K. J., Hennesy, F., & Brady, D. (2012). Luminal hindgut bacterial diversities of the grass and sugarcane feeding termite Trinervitermes trinervoides. African Journal of Microbiology Research, 6, 2639–2648.

    Google Scholar 

  • Sasagawa, T., Matsui, M., Kobayashi, Y., Otagiri, M., Moriya, S., Sakamoto, Y., Ito, Y., Lee, C. C., Kitamoto, K., & Arioka, M. (2011). High-throughput recombinant gene expression systems in Pichia pastoris using newly developed plasmid vectors. Plasmid, 65, 65–69.

    Article  CAS  PubMed  Google Scholar 

  • Scharf, M. E. (2015a). Omic research in termites: An overview and a roadmap. Frontiers in Genetics, 6, 1–19.

    Article  CAS  Google Scholar 

  • Scharf, M. E. (2015b). Termites as targets and models for biotechnology. Annual Review of Entomology, 60, 77–102.

    Article  CAS  PubMed  Google Scholar 

  • Scharf, M. E., & Tartar, A. (2008). Termite digestomes as sources for novel lignocellulases. Biofuels, Bioproducts and Biorefining, 2, 540–552.

    Article  CAS  Google Scholar 

  • Scharf, M. E., Wu-Scharf, D., Zhou, X., Pittendrigh, B. R., & Bennett, G. W. (2005). Gene expression profiles among immature and adult reproductive castes of the termite Reticulitermes flavipes. Insect Molecular Biology, 14, 31–44.

    Article  CAS  PubMed  Google Scholar 

  • Scharf, M. E., Karl, Z. J., Sethi, A., & Boucias, D. G. (2011). Multiple levels of synergistic collaboration in termite lignocellulose digestion. PLoS One, 6, e21709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sethi, A., Slack, J. M., Kovaleva, E. S., Buchman, G. W., & Scharf, M. E. (2013). Lignin-associated metagene expression in a lignocellulose-digesting termite. Insect Biochemistry and Molecular Biology, 43, 91–101.

    Article  CAS  PubMed  Google Scholar 

  • Shimada, K., & Maekawa, K. (2010). Changes in endogenous cellulase gene expression levels and reproductive characteristics of primary and secondary reproductives with colony development of the termite Reticulitermes speratus (Isoptera: Rhinotermitidae). Journal of Insect Physiology, 56, 1118–1124.

    Article  CAS  PubMed  Google Scholar 

  • Shimada, K., & Maekawa, K. (2014). Gene expression and molecular phylogenetic analyses of beta-glucosidase in the termite Reticulitermes speratus (Isoptera: Rhinotermitidae). Journal of Insect Physiology, 65, 63–69.

    Article  CAS  PubMed  Google Scholar 

  • Sillam-Dusses, D., Krasulova, J., Vrkoslav, V., Pytelkova, J., Cvacka, J., Kutalova, K., Bourguignon, T., Miura, T., & Sobotnik, J. (2012). Comparative study of the labial gland secretion in termites (Isoptera). PLoS One, 7, e46431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slaytor, M. (2000). Energy metabolism in the termite and its gut microbiota. In T. Abe, D. E. Bignell, & M. Higashi (Eds.), Termites: Evolution, sociality, symbioses, ecology (pp. 307–332). Dordrecht: Kluwer Academics Publishers.

    Chapter  Google Scholar 

  • Tahir, M., Saleh, F., Ohtsuka, A., & Hayashi, K. (2005). Synergistic effect of cellulase and hemicellulase on nutrients utilization and performance in broilers fed corn-soybean meal diet. Animal Science Journal, 76, 559–565.

    Article  CAS  Google Scholar 

  • Tai, V., & Keeling, P. J. (2013). Termite hindguts and the ecology of microbial communities in the sequencing age. The Journal of Eukaryotic Microbiology, 60, 421–428.

    Article  PubMed  Google Scholar 

  • Tartar, A., Wheeler, M. M., Zhou, X., Coy, M. R., Boucias, D. G., & Scharf, M. E. (2009). Parallel meta-transcriptome analyses of host and symbiont gene expression in the gut of the termite Reticulitermes flavipes. Biotechnology for Biofuels, 2, 25.

    Article  PubMed  PubMed Central  Google Scholar 

  • Teather, R. M., & Wood, P. J. (1982). Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Applied and Environmental Microbiology, 43, 777–780.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Terrapon, N., Li, C., Robertson, H. M., Ji, L., Meng, X., Booth, W., Chen, Z., et al. (2014). Molecular traces of alternative social organization in a termite genome. Nature Communications, 5, 3636. https://doi.org/10.1038/ncomms4636.

    Article  CAS  PubMed  Google Scholar 

  • Timell, T. E. (1967). Recent progress in the chemistry of wood hemicelluloses. Wood Science and Technology, 1, 45–70.

    Article  CAS  Google Scholar 

  • Todaka, N., Moriya, S., Saita, K., Hondo, T., Kiuchi, I., Takasu, H., Ohkuma, M., Piero, C., Hayashizaki, Y., & Kudo, T. (2007). Environmental cDNA analysis of the genes involved in lignocellulose digestion in the symbiotic protist community of Reticulitermes speratus. FEMS Microbiology Ecology, 59, 592–599.

    Article  CAS  PubMed  Google Scholar 

  • Todaka, N., Inoue, T., Saita, K., Ohkuma, M., Nalepa, C. A., Lenz, M., Kudo, T., & Moriya, S. (2010). Phylogenetic analysis of cellulolytic enzyme genes from representative lineages of termites and a related cockroach. PLoS One, 5, e8636.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tokuda, G., Watanabe, H., Matsumoto, T., & Noda, H. (1997). Cellulose digestion in the wood-eating higher termite, Nasutitermes takasagoensis (Shiraki): Distribution of cellulases and properties of endo-beta-1,4-glucanase. Zoological Science, 14, 83–93.

    Article  CAS  PubMed  Google Scholar 

  • Tokuda, G., Saito, H., & Watanabe, H. (2002). A digestive β-glucosidase from the salivary glands of the termite, Neotermes koshunensis (Shiraki): Distribution, characterization and isolation of its precursor cDNA by 5′- and 3′-RACE amplifications with degenerate primers. Insect Biochemistry and Molecular Biology, 32, 1681–1689.

    Article  CAS  PubMed  Google Scholar 

  • Tokuda, G., Lo, N., Watanabe, H., Arakawa, G., Matsumoto, T., & Noda, H. (2004). Major alteration of the expression site of endogenous cellulases in members of an apical termite lineage. Molecular Ecology, 13, 3219–3228.

    Article  CAS  PubMed  Google Scholar 

  • Tokuda, G., Tsuboi, Y., Kihara, K., Saitou, S., Moriya, S., Lo, N., & Kikuchi, J. (2014). Metabolomic profiling of 13C-labelled cellulose digestion in a lower termite: Insights into gut symbiont function. Proceedings of the Biological Sciences, 281, 1789.

    Article  Google Scholar 

  • Uchima, C. A., & Arioka, M. (2012). Expression and one-step purification of recombinant proteins using an alternative episomal vector for the expression of N-tagged heterologous proteins in Pichia pastoris. Bioscience, Biotechnology, and Biochemistry, 76, 368–371.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., & Qian, P. Y. (2009). Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies. PLoS One, 4, e7401.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, Q., Qian, C., Zhang, X. Z., Liu, N., Yan, X., & Zhou, Z. (2012). Characterization of a novel thermostable β-glucosidase from a metagenomic library of termite gut. Enzyme and Microbial Technology, 51, 319–324.

    Article  CAS  PubMed  Google Scholar 

  • Warnecke, F., Luginbuhl, P., Ivanova, N., Ghassemian, M., Richardson, T. H., Stege, J. T., Cayouette, M., McHardy, A. C., Djordjevic, G., Aboushadi, N., Sorek, R., Tringe, S. G., et al. (2007). Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature, 450, 560–565.

    Article  CAS  PubMed  Google Scholar 

  • Watanabe, H., & Tokuda, G. (2010). Cellulolytic Systems in Insects. Annual Review of Entomology, 55, 609–632.

    Article  CAS  PubMed  Google Scholar 

  • Watanabe, H., Nakamura, M., Tokuda, G., Yamaoka, I., Scrivener, A. M., & Noda, H. (1997). Site of secretion and properties of endogenous endo-β-1,4-glucanase components from Reticulitermes speratus (Kolbe), a Japanese subterranean termite. Insect Biochemistry and Molecular Biology, 27, 305–313.

    Article  CAS  PubMed  Google Scholar 

  • Watanabe, H., Noda, H., Tokuda, G., & Lo, N. (1998). A cellulase gene of termite origin. Nature, 394, 330–331.

    Article  CAS  PubMed  Google Scholar 

  • Weil, T., Korb, J., & Rehli, M. (2009). Comparison of queen-specific gene expression in related lower termite species. Molecular Biology and Evolution, 26, 1841–1850.

    Article  CAS  PubMed  Google Scholar 

  • Xie, L., Zhang, L., Zhong, Y., Liu, N., Long, Y., Wang, S., Zhou, X., Zhou, Z., Huang, Y., & Wang, Q. (2012). Profiling the metatranscriptome of the protistan community in Coptotermes formosanus with emphasis on the lignocellulolytic system. Genomics, 99, 246–255.

    Article  CAS  PubMed  Google Scholar 

  • Yang, B., & Wyman, C. E. (2008). Pretreatment: The key to unlocking low-cost cellulosic ethanol. Biofuels, Bioproducts and Biorefining, 2, 26–40.

    Article  CAS  Google Scholar 

  • Zhang, D., Allen, A. B., & Lax, A. R. (2012a). Functional analyses of the digestive β-glucosidase of Formosan subterranean termites (Coptotermes formosanus). Journal of Insect Physiology, 58, 205–210.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, D., Lax, A. R., Henrissat, B., Coutinho, P., Katiya, N., Nierman, W. C., & Fedorova, N. (2012b). Carbohydrate-active enzymes revealed in Coptotermes formosanus (Isoptera: Rhinotermitidae) transcriptome. Insect Molecular Biology, 21, 235–245.

    Article  PubMed  Google Scholar 

  • Zhou, X., Smith, J. A., Oi, F. M., Koehler, P. G., Bennett, G. W., & Scharf, M. E. (2007). Correlation of cellulase gene expression and cellulolytic activity throughout the gut of the termite Reticulitermes flavipes. Gene, 395, 29–39.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Talia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Talia, P., Arneodo, J. (2018). Lignocellulose Degradation by Termites. In: Khan, M., Ahmad, W. (eds) Termites and Sustainable Management. Sustainability in Plant and Crop Protection. Springer, Cham. https://doi.org/10.1007/978-3-319-72110-1_5

Download citation

Publish with us

Policies and ethics