Skip to main content

Ecological Impacts of Termites

  • Chapter
  • First Online:
Termites and Sustainable Management

Abstract

Macroinvertebrates play an important role in the maintenance of soil structural stability and fertility in many natural and man-modified habitats. Termites, as dominant invertebrates in tropical soils, have a major influence on soil chemical and physical structure. A diverse range of species processes a variety of plant organic matter at all stages of decomposition contributing to the efficient return of nutrients to the vegetation. Soil restoration and sustainable agricultural practices can be achieved through utilization of the ecosystem services of these organisms. The exploitation of termites for agroecosystem management and soil restoration remains, however, largely unexplored. Only few researches have been reported on the utilization of termite activity for the management of soil fertility or for the rehabilitation of degraded soils. The present chapter highlights the potentials of termites as detritivores, soil builders, restorers of degraded land, and producers of some greenhouse gases, in the light of available literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe, S. S., Yamamoto, S., & Wakatsuki, T. (2009). Soil-particle selection by the mound building termite Macrotermes bellicosus on a sandy loam soil catena in a Nigerian tropical savanna. Journal of Tropical Ecology, 25, 449–452.

    Article  Google Scholar 

  • Adamson, A. M. (1943). Termites and the fertility of soils. Tropical Agriculture, 20, 107–112.

    CAS  Google Scholar 

  • Adhikary, N., Erens, H., Weemaels, L., Deweer, E., Mees, F., Mujinya, B. B., Baert, G., Boeckx, P., & Ev, R. (2016). Effects of spreading out termite mound material on ferralsol fertility, Katanga, D.R. Congo. Communications in Soil Science and Plant Analysis, 47, 1089–1100.

    Article  CAS  Google Scholar 

  • Alba-Lynn, C., & Detling, J. K. (2008). Interactive disturbance effects of two disparate ecosystem engineers in North American shortgrass steppe. Oecologia, 157, 269.

    Article  PubMed  Google Scholar 

  • Ali, I. G., Sheridan, G., French, J. R. J., & Ahmed, B. M. S. (2013). Ecological benefits of termite soil interaction and microbial symbiosis in the soil ecosystem. Journal of Earth Sciences and Geotechnical Engineering, 3, 63–85.

    CAS  Google Scholar 

  • Arab, A., & Costa-Leonardo, A. M. (2005). Effect of biotic and abiotic factors on the tunneling behavior of Coptotermes gestroi and Heterotermes tenuis (Isoptera: Rhinotermitidae). Behavioural Processes, 70, 32–40.

    Article  PubMed  Google Scholar 

  • Araujo, R. L. (1970). Termites of the neotropical region. In K. Krishna & F. M. Weesner (Eds.), Biology of termites (pp. 527–576). London: Academic.

    Google Scholar 

  • Attignon, S. E., Lachat, T., Sinsin, B., Nagel, P., & Peveling, R. (2005). Termite assemblages in a West-African semi-deciduous forest and teak plantations. Agriculture, Ecosystems and Environment, 110, 318–326.

    Article  Google Scholar 

  • Barrios, E. (2007). Soil biota, ecosystem services and land productivity. Ecological Economics, 64, 269–285.

    Article  Google Scholar 

  • Bezerra-Gusmão, M. A., Barbosa, J. R. C., Barbosa MR de, V., Bandeira, A. G., & Sampaio, E. V. S. B. (2011). Are nests of Constrictotermes cyphergaster (Isoptera, Termitidae) important in the C cycle in the driest area of semiarid caatinga in northeast Brazil? Applied Soil Ecology, 47, 1–5.

    Article  Google Scholar 

  • Bhavana, K. V., Poovoli, A., & Rajmohana, K. (2015). A comparison on termite assemblages in coffee & teak plantations and semievergreen forest—A case study in North Wayanad, Kerala, India. Tropical Agricultural Research, 26, 456–467.

    Article  Google Scholar 

  • Bignell, D. E. (2006). Termites as soil engineers and soil processors. In H. König & A. Varma (Eds.), Intestinal microorganisms of soil invertebrates (pp. 183–220). Berlin: Springer.

    Chapter  Google Scholar 

  • Bignell, D. E., & Eggleton, P. (2000). Termites in ecosystems. In T. Abe, D. E. Bignell, & M. Higashi (Eds.), Termites: Evolution, sociality, symbiosis, ecology (pp. 363–387). Dordrecht: Kluwer Academic Publisher.

    Chapter  Google Scholar 

  • Bignell, D. E., Oskarsson, H., & Anderson, J. M. (1978). Association of Actinomycete-like bacteria with soil-feeding termites (Termitidae, Termitinae). Applied and Environmental Microbiology, 37, 339–342.

    Google Scholar 

  • Bignell, D. E., Eggleton, P., Nunes, L., & Thomas, K. L. (1997). Termites as mediators of carbon fluxes in tropical forest: Budgets for carbon dioxide and methane emissions. In A. D. Watt, N. E. Stork, & M. D. Hunter (Eds.), Forests and insects (pp. 109–134). London: Chapman & Hall.

    Google Scholar 

  • Bonachela, J. A., Pringle, R. M., Sheffer, E., Coverdale, T. C., Guyton, J. A., Caylor, K. K., Levin, S. A., & Ce, T. (2015). Termite mounds can increase the robustness of dryland ecosystems to climatic change. Science, 347, 651–655.

    Article  CAS  PubMed  Google Scholar 

  • Bottinelli, N., Jouquet, P., Podwojewski, P., Grimaldi, M., & Peng, X. (2015). Why is the influence of soil macrofauna on soil structure only considered by soil ecologists? Soil and Tillage Research, 146, 118–124.

    Article  Google Scholar 

  • Brauman, A. (2000). Effect of gut transit and mound deposit on soil organic matter transformations in the soil feeding termite: A review. European Journal of Soil Biology, 36, 117–125.

    Article  Google Scholar 

  • Brauman, A., Kane, M. D., Labat, M., & Breznak, J. A. (1992). Genesis of acetate and methane by gut bacteria of nutritionally divers termites. Science, 257, 1384–1387.

    Article  CAS  PubMed  Google Scholar 

  • Brauman, A., Majeed, M. Z., Buatois, B., Robert, A., Pablo, A. L., & Miambi, E. (2015). Nitrous oxide (N2O) emissions by termites: Does the feeding guild matte? PLoS One, 10, e0144340.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Breznak, J. A. (1975). Symbiotic relationships between termites and their intestinal microbiota. Symbiosis (pp. 559–580). London: Cambridge University Press.

    Google Scholar 

  • Brody, A. K., Palmer, T. M., Fox-Dobbs, K., & Doak, D. F. (2010). Termites, vertebrate herbivores, and the fruiting success of Acacia drepanolobium. Ecology, 91, 399–407.

    Article  PubMed  Google Scholar 

  • Brümmer, C., Papen, H., Wassmann, R., & Brüggemann, N. (2009). Fluxes of CH4 and CO2 from soil and termite mounds in south Sudanian savanna of Burkina Faso (West Africa). Global Biogeochem Cycles, 23, GB1001.

    Article  CAS  Google Scholar 

  • Brussaard, L. (2012). Ecosystem services provided by soil biota. In D. H. Wall (Ed.), Oxford handbook of soil ecology and ecosystem services. Oxford: Oxford University Press.

    Google Scholar 

  • Brussaard, L., de Ruiter, P. C., & Brown, G. G. (2007). Soil biodiversity for agricultural sustainability. Agriculture, Ecosystems and Environment, 121, 233–244.

    Article  Google Scholar 

  • Campora, C. E., & Grace, J. K. (2004). Effect of average worker size on tunneling behavior of Formosan subterranean termite colonies. Journal of Insect Behavior, 17, 777–791.

    Article  Google Scholar 

  • Chouvenc, T., Elliott, M. L., & Su, N. (2011). Rich microbial community associated with the nest material of Reticulitermes flavipes (Isoptera: Rhinotermitidae). Florida Entomologist, 94, 115–116.

    Article  Google Scholar 

  • Cook, S. F. (1932). The respiratory gas exchange in Termopsis nevadensis. The Biological Bulletin, 63, 246–257.

    Article  CAS  Google Scholar 

  • Cornelius, M. L., & Osbrink, W. L. A. (2010). Effect of soil type and moisture availability on the foraging behavior of the Formosan subterranean termite (Isoptera: Rhinotermitidae). Journal of Economic Entomology, 103, 799–807.

    Article  PubMed  Google Scholar 

  • Crain, C. M., & Bertness, M. D. (2006). Ecosystem engineering across environmental gradients: Implications for conservation and management. BioScience, 56, 211–218.

    Article  Google Scholar 

  • Dangerfield, J. M., & Schuurman, G. (2000). Foraging by fungus-growing termites (Isoptera: Termitidae, Macrotermitinae) in the Okavango Delta, Botswana. Journal of Tropical Ecology, 16, 717–731.

    Article  Google Scholar 

  • Dangerfield, J. M., Mccarthy, T. S., & Ellery, W. N. (1998). The mound-building termite Macrotermes michaelseni as an ecosystem engineer. Journal of Tropical Ecology, 14, 507–520.

    Article  Google Scholar 

  • Davies, A. B., Baldeck, C. A., & Asner, G. P. (2016). Termite mounds alter the spatial distribution of African savanna tree species. Journal of Biogeography, 43, 301–313.

    Article  Google Scholar 

  • Dawes, T. Z. (2010). Reestablishment of ecological functioning by mulching and termite invasion in a degraded soil in an Australian savanna. Soil Biology and Biochemistry, 42, 1825–1834.

    Article  CAS  Google Scholar 

  • De Gerenyu, V. L., Anichkin, A., Avilov, V., Kuznetsov, A., & Kurganova, I. (2015). Termites as a factor of spatial differentiation of CO2 fluxes from the soils of monsoon tropical forests in southern Vietnam. Eurasian Soil Science, 48, 208–217.

    Article  CAS  Google Scholar 

  • de Paula, R. C., Silveira, R. M. L., da Rocha, M. M., & Izzo, T. J. (2016). The restoration of termite diversity in different reforestated forests. Agroforestry Systems, 90, 395–404.

    Article  Google Scholar 

  • Dixon, R. K., Solomon, A. M., Brown, S., Houghton, R. A., Trexier, M. C., & Wisniewski, J. (1994). Carbon pools and flux of global forest ecosystems. Science, 263, 185–190.

    Article  CAS  PubMed  Google Scholar 

  • Donovan, S. E., Griffiths, G. J. K., Homathevi, R., & Winder, L. (2007). The spatial pattern of soil-dwelling termites in primary and logged forest in Sabah, Malaysia. Ecological Entomology, 32, 1–10.

    Article  Google Scholar 

  • Eggleton, P. (2000). Global patterns of termite diversity. In T. Abe, D. E. Bignell, & M. Higashi (Eds.), Termites: Evolution, sociality, symbioses, ecology (pp. 25–51). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Eggleton, P., Bignell, D. E., Sands, W. A., Mawdsley, N. A., Lawton, J. H., Wood, T. G., & Bignell, N. C. (1996). The diversity, abundance and biomass of termites under differing levels of disturbance in the Mbalmayo Forest reserve, Southern Cameroon. Philosophical Transactions of the Royal Society of London, Series B, 351, 51–68.

    Article  Google Scholar 

  • Evans, T. A., Dawes, T. Z., Ward, P. R., & Lo, N. (2011). Ants and termites increase crop yield in a dry climate. Nature Communications, 2, 262.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fall, S., Brauman, A., & Chotte, J. L. (2001). Comparative distribution of organic matter in particle and aggregate size fractions in the mounds of termites with different feeding habits in Senegal: Cubitermes niokoloensis and Macrotermes bellicosus. Applied Soil Ecology, 17, 131–140.

    Article  Google Scholar 

  • French, J. R. J. (1988). A case for ecosystem-level experimentation in termite research. Socio-Economic Planning Sciences, 14, 269–280.

    Google Scholar 

  • Freymann, B. P., Buitenwerf, R., Desouza, O., & Olff, H. (2008). The importance of termites (Isoptera) for the recycling of herbivore dung in tropical ecosystems: A review. European Journal of Entomology, 105, 165–173.

    Article  Google Scholar 

  • Grohmann, C. (2010). Termite mediated heterogeneity of soil and vegetation patterns in a semi-arid savanna ecosystem in Namibia. PhD thesis, Julius-Maximilians-Universität Würzburg (D), 119 pp.

    Google Scholar 

  • Gupta, S. R., Rajvanshi, R., & Singh, J. S. (1981). The role of the termite Odontotermes gurdaspurensis (Isoptera: Termitidae) in plant decomposition in a tropical grassland. Pedobiologia, 22, 254–261.

    CAS  Google Scholar 

  • HO, A., Erens, H., Mujinya, B. B., Boeckx, P., Baert, G., Schneider, B., Frenzel, P., Boon, N., & Van Ranst, E. (2013). Termites facilitate methane oxidation and shape the methanotrophic community. Applied and Environmental Microbiology, 79, 7234–7240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holt, J. A., & Coventry, R. J. (1990). Nutrient cycling in Australian savannas. Journal of Biogeography, 17, 427–432.

    Article  Google Scholar 

  • Holt, A. J., & Lepage, M. (2000). Termites and soil properties. In T. Abe, D. E. Bignell, & M. Higashi (Eds.), Termites: Evolution, sociality, symbioses, ecology (pp. 389–407). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Hooper, D. U., Chapin, F. S., Ewel, J. J., Hector, A., Inchausti, P., Lavorel, S., Lawton, J. H., Lodge, D. M., Loreau, M., Naeem, S., Schmid, B., Setala, H., Symstad, A. J., Vandermeer, J., & Da, W. (2005). Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecological Monographs, 75, 3–35.

    Article  Google Scholar 

  • Jamali, H., Livesley, S. J., Hutley, L. B., Fest, B., & Arndt, S. K. (2013). The relationships between termite mound CH4/CO2 emissions and internal concentration ratios are species specific. Biogeosciences, 10, 2229–2240.

    Article  CAS  Google Scholar 

  • Jones, D. T., & Eggleton, P. (2000). Sampling termite assemblages in tropical forests: Testing a rapid biodiversity assessment protocol. Journal of Applied Ecology, 37, 191–203.

    Article  Google Scholar 

  • Jones, C. G., Lawton, J. H., & Shachak, M. (1994). Organisms as ecosystem engineers. Oikos, 69, 373–386.

    Article  Google Scholar 

  • Jordan, C. F. (1985). Nutrient cycling in tropical forest ecosystems: Principles and their application in management and conservation. Chichester: Wiley.

    Google Scholar 

  • Joseph, G. S., Seymour, C., Cumming, G., Cumming, D. M., & Mahlangu, Z. (2014). Termite mounds increase functional diversity of woody plants in African savannas. Ecosystems, 17, 808–819.

    Article  CAS  Google Scholar 

  • Joseph, G. S., Makumbe, M., Seymour, C. L., Cumming, G. S., Mahlangu, Z., & Cumming, D. H. M. (2015). Termite mounds mitigate against 50 years of herbivore induced reduction of functional diversity of savanna woody plants. Landscape Ecology, 30, 2161–2174.

    Article  Google Scholar 

  • Jouquet, P., Lepage, M., & Velde, B. (2002a). Termite soil preferences and particle selections: Strategies related to ecological requirements. Insectes Sociaux, 49, 1–7.

    Article  Google Scholar 

  • Jouquet, P., Mamou, L., Lepage, M., & Velde, B. (2002b). Effect of termites on clay minerals in tropical soils; fungus-growing termites as weathering agents. European Journal of Soil Science, 53, 521–527.

    Article  Google Scholar 

  • Jouquet, P., Dauber, J., Lagerlof, J., Lavelle, P., & Lepage, M. (2006). Soil invertebrates as ecosystem engineers, intended and accidental effects on soil and feedback loops. Applied Soil Ecology, 32, 153–164.

    Article  Google Scholar 

  • Jouquet, P., Bottinelli, N., Lata, J. C., Mora, P., & Caquineau, S. (2007). Role of the fungus-growing termite Pseudacanthotermes spiniger (Isoptera: Macrotermitinae) in the dynamic of clay and soil organic matter content. An experimental analysis. Geoderma, 139, 127–133.

    Article  CAS  Google Scholar 

  • Jouquet, P., Traore, S., Choosai, C., Hartmann, C., & Bignell, D. (2011). Influence of termites on ecosystem functioning. Ecosystem services provided by termites. European Journal of Soil Biology, 47, 215–222.

    Article  Google Scholar 

  • Jouquet, P., Blanchart, E., & Capowiezc, Y. (2014). Utilization of earthworms and termites for the restoration of ecosystem functioning. Applied Soil Ecology, 73, 34–40.

    Article  Google Scholar 

  • Jouquet, P., Chintakunta, S., Bottinelli, N., Subramanian, S., & Caner, L. (2016). The influence of fungus-growing termites on soil macro and micro-aggregates stability varies with soil type. Applied Soil Ecology, 101, 117–123.

    Article  Google Scholar 

  • Jungerius, P. D., van den Ancker, J. A. M., & Mücher, H. J. (1999). The contribution of termites to the micro-granular structure of soils on the Uasin Gishu Plateau, Kenya. Catena, 34, 349–363.

    Article  Google Scholar 

  • Kaiser, D., Lepage, M., Konaté, S., & Linsenmair, K. E. (2017). Ecosystem services of termites (Blattoidea: Termitoidae) in the traditional soil restoration and cropping system Zaï in Northern Burkina Faso (West Africa). Agriculture, Ecosystems and Environment, 236, 198–211.

    Article  Google Scholar 

  • Karak, T., Sonar, I., Paul, R. K., Das, S., Boruah, R. K., Dutta, A. K., & Das, D. K. (2014). Composting of cow dung and crop residues using termite mounds as bulking agent. Bioresource Technology, 169, 731–741.

    Article  CAS  PubMed  Google Scholar 

  • Kaschuk, G., Cesar, J. P. S., Almeida, J. A., Sinhorati, D. C., & Berton, J. F. J. (2006). Termite activity in relation to natural grassland soil attributes. Scientia Agricola (Piracicaba Braz), 63, 583–588.

    Article  Google Scholar 

  • Konate, S., Leroux, X., Tessier, D., & Lepage, M. (1999). Influence of large termitaria on soil characteristics, soil water regime, and tree leaf shedding pattern in a West African savanna. Plant and Soil, 206, 47–60.

    Article  Google Scholar 

  • Kooistra, M. J., & van Noordwijk, M. (1996). Soil architecture and distribution of organic matter. In M. R. Carter & B. A. Stewart (Eds.), Structure and organic matter storage in agricultural soils, Advance in soil science (pp. 15–57). Boca Raton: CRC Press.

    Google Scholar 

  • Kooyman, C., & Onck, R. F. M. (1987a). Distribution of termite (Isoptera) species in southwestern Kenya in relation to land use and the morphology of their galleries. Biology and Fertility of Soils, 3, 69–73.

    Google Scholar 

  • Kooyman, C., & Onck, R. F. M. (1987b). The interaction between termite activity, agricultural practices and soil characteristics in Kisii district, Kenya (p. 120). Wageningen: Agricultural University Papers. 87–3.

    Google Scholar 

  • Lavelle, P. (2002). Functional domains in soils. Ecological Research, 17, 441–450.

    Article  Google Scholar 

  • Lavelle, P., Bignell, D., Lepage, M., Wolters, V., Roger, P., Ineson, P., Heal, O. W., & Dhillion, S. (1997a). Soil function in a changing world: The role of invertebrate ecosystem engineers. European Journal of Soil Biology, 33, 159–193.

    CAS  Google Scholar 

  • Lavelle, P., Begon, M., & Fitter, A. H. (1997b). Faunal activities and soil processes: Adaptive strategies that determine ecosystem function. Advances in Ecological Research, 27, 93–132.

    Article  Google Scholar 

  • Lee, S., & Su, N. Y. (2010). A novel approach to characterize branching network: Application to termite tunnel patterns. Journal of Asia-Pacific Entomology, 13, 117–120.

    Article  Google Scholar 

  • Lee, K. E., & Wood, T. G. (1971). Termites and soils. London/New York: Academic.

    Google Scholar 

  • Leonard, J., & Rajot, J. L. (2001). Influence of termites on runoff and infiltration: Quantification and analysis. Geoderma, 104, 17–40.

    Article  Google Scholar 

  • Levick, S. R., Asner, G. P., Kennedy-Bowdoin, T., & Knapp, D. E. (2010). The spatial extent of termite influences on herbivore browsing in an African savanna. Biological Conservation, 143, 2462–2467.

    Article  Google Scholar 

  • Lobry de Bruyn, L. A., & Conacher, A. J. (1990). The role of termites and ants in soil modification: A review. Australian Journal of Soil Research, 28, 55–93.

    Google Scholar 

  • Mando, A. (1997). The role of termites and mulch in rehabilitation of crusted Sahelian soils (p. 101). Wageningen: Wageningen University.

    Google Scholar 

  • Mando, A., & Miedema, R. (1997). Termite induced change in soil structure after mulching degraded (crusted) soil in the Sahel. Applied Soil Ecology, 6, 241–249.

    Article  Google Scholar 

  • Martius, C., Amelung, W., & Garcia, M. V. B. (2000). The Amazonian forest termites Constrictotermes cavifrons feeds on microepiphytes. Sociobiology, 35, 379–383.

    Google Scholar 

  • Maynard, D. S., Crowther, T. W., King, J. R., Warren, R. J., & Bradford, M. A. (2015). Temperate forest termites: Ecology, biogeography, and ecosystem impacts. Ecological Entomology, 40, 199–210.

    Article  Google Scholar 

  • Miyagawa, S., Koyama, Y., Kokubo, M., Matsushita, Y., Adachi, Y., Sivilay, S., Kawakubo, N., & Oba, S. (2011). Indigenous utilization of termite mounds and their sustainability in a rice growing village of the central plain of Laos. Journal of Ethnobiology and Ethnomedicine, 7, 24.

    Article  PubMed  PubMed Central  Google Scholar 

  • Moe, S. R., Mobaek, R., & Narmo, A. K. (2009). Mound building termites contribute to savanna vegetation heterogeneity. Plant Ecology, 202, 31–40.

    Article  Google Scholar 

  • Mora, P., Seugé, C., Chotte, J. L., & Rouland, C. (2003). Physico-chemical typology of the biogenic structures of termites and earthworms: A comparative analysis. Biology and Fertility of Soils, 37, 245–249.

    Google Scholar 

  • Nakashima, K., Watanabe, H., Saitoh, H., Tokuda, G., & Azuma, J. I. (2002). Dual cellulose-digesting system of the wood-feeding termite, Coptotermes formosanus Shiraki. Insect Biochemistry and Molecular Biology, 32, 777–784.

    Article  CAS  PubMed  Google Scholar 

  • Ndiaye, D., Lepage, M., Sall, C. E., & Brauman, A. (2004). Nitrogen transformations associated with termite biogenic structures in a dry savanna ecosystem. Plant and Soil, 265, 189–196.

    Article  CAS  Google Scholar 

  • Noirot, C. (1970). The nest of termites. In K. Krishna & F. M. Weesner (Eds.), Biology of termites (Vol. 2, pp. 73–125). New York: Academic.

    Google Scholar 

  • Norkrans, B. (1963). Degradation of cellulose. Annual Review of Phytopathology, 1, 325–350.

    Article  CAS  Google Scholar 

  • Nutting, W. L., Haverty, M. I., & LaFage, J. P. (1987). Physical and chemical alteration of soil by two subterranean termite species in Sonoran Desert grassland. Journal of Arid Environments, 12, 233–239.

    Google Scholar 

  • Oberst, S., Lai Joseph, C. S., & Evans, T. A. (2016). Termites utilize clay to build structural supports and so increase foraging resources. Scientific Reports, 6, 20990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohashi, M., Maekawa, Y., Hashimoto, Y., Takematsu, Y., Hasin, S., & Yamane, S. (2017). CO2 emission from subterranean nests of ants and termites in a tropical rain forest in Sarawak, Malaysia. Applied Soil Ecology, 117–118, 147–155.

    Article  Google Scholar 

  • Osiemo, Z., Marten, A., Kaib, M., Gitonga, L., Boga, H., & Brandl, R. (2010). Open relationships in the castles of clay: High diversity and low host specificity of Termitomyces fungi associated with fungus-growing termites in Africa. Insectes Sociaux, 57, 351–363.

    Article  Google Scholar 

  • Petipas, R. H., & Brody, A. K. (2014). Termites and ungulates affect arbuscular mycorrhizal richness and infectivity in a semiarid savanna. Botany, 92, 233–240.

    Article  Google Scholar 

  • Pulleman, M. M., Creamer, R., Hamer, U., Helder, J., Pelosi, C., Peres, G., & Rutgers, M. (2012). Soil biodiversity, biological indicators and soil ecosystem services-an overview of European approaches. Current Opinion in Environment Sustainability, 4, 529–538.

    Article  Google Scholar 

  • Rasmussen, R. A., & Khalil, M. A. K. (1983). Global production of methane by termites. Nature, 301, 700–702.

    Article  CAS  Google Scholar 

  • Robert, O. E., Frank, U. O., & Agbonsalo, O. U. (2007). Influence of activities of termites on some physical and chemical properties of soils under different land use patterns. A review. International Journal of Soil Science, 2, 1–14.

    Article  Google Scholar 

  • Roose-Amsaleg, C., Brygoo, Y., & Harry, M. (2004). Ascomycete diversity in soil-feeding termite nests and soils from a tropical rainforest. Environmental Microbiology, 6, 462–469.

    Article  CAS  PubMed  Google Scholar 

  • Rouland-Lefèvre, C. (2000). Symbiosis with fungi. In M. V. Brian (Ed.), Production ecology of ants and termites (pp. 289–306). Cambridge: Cambridge University Press.

    Google Scholar 

  • Sarcinelli, T. S., Schaefer, C. E. G. R., Filho, E. I. F., Mafia, R. G., & Neri, A. V. (2013). Soil modification by termites in a sandy-soil vegetation in the Brazilian Atlantic rain forest. Journal of Tropical Ecology, 29, 439–448.

    Article  Google Scholar 

  • Sarr, M., Agbogba, C., Russell-Smith, A., & Masse, D. (2001). Effects of soil faunal activity and woody shrubs on water infiltration rates in a semi-arid fallow of Senegal. Applied Soil Ecology, 16, 283–290.

    Article  Google Scholar 

  • Semhi, K., Chaudhuri, S., Clauer, N., & Boeglin, J. L. (2008). Impact of termite activity on soil environment: A perspective from their soluble chemical components. International journal of Environmental Science and Technology, 5, 431–444.

    Article  CAS  Google Scholar 

  • Seymour, C. L., Milewski, A. V., Mills, A. J., Joseph, G. S., Cumming, G. S., Cumming, D. H. M., & Mahlangu, Z. (2014). Do the large termite mounds of Macrotermes concentrate micronutrients in addition to macronutrients in nutrient-poor African savannas? Soil Biology and Biochemistry, 68, 95–105.

    Article  CAS  Google Scholar 

  • Shanbhag, R. R., Kabbaj, M., Sundararaj, R., & Jouquet, P. (2017). Rainfall and soil properties influence termite mound abundance and height: A case study with Odontotermes obesus (Macrotermitinae) mounds in the Indian Western Ghats forests. Applied Soil Ecology, 111, 33–38.

    Article  Google Scholar 

  • Sileshi, G. W., Arshad, M. A., Konaté, S., & Nkunika, P. O. Y. (2010). Termite-induced heterogeneity in African savanna vegetation: Mechanisms and patterns. Journal of Vegetation Science, 21, 923–937.

    Article  Google Scholar 

  • Su, N. Y., & Puche, H. (2003). Tunneling activity of subterranean termites (Isoptera: Rhinotermitidae) in sand with moisture gradients. Journal of Economic Entomology, 96, 88–93.

    Article  PubMed  Google Scholar 

  • Sugimoto, A., & Inoue, T. (1998). Methane oxidation by termite mounds estimated by the carbon isotopic composition of methane. Global Biogeochem Cycles, 12, 595–605.

    Article  CAS  Google Scholar 

  • Traore, S., Nygard, R., Guinko, S., & Lepage, M. (2008). Impact of Macrotermes termitaria as a source of heterogeneity on tree diversity and structure in a Sudanian savanna under controlled grazing and annual prescribed fire (Burkina Faso). Forest Ecology and Management, 255, 2337–2346.

    Article  Google Scholar 

  • Turner, J. S. (2006). Termites as mediators of the water economy of arid savanna ecosystems. In P. D'Odorico & A. Porporato (Eds.), Dryland ecohydrology (pp. 303–313). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Vasconcellos, A., Bandeira, A. G., Moura, F. M. S., Araujo, V. F. P., Gusmao, M. A. B., & Constantino, R. (2010). Termite assemblages in three habitats under different disturbance regimes in the semi-arid Caatinga of NE Brazil. Journal of Arid Environments, 74, 298–302.

    Article  Google Scholar 

  • Watanabe, H., Noda, H., Tokuda, G., & Lo, N. (1998). A cellulase gene of termite origin. Nature, 394, 330–331.

    Article  CAS  PubMed  Google Scholar 

  • Watson, J. P. (1962). The soil below a termite mound. Journal of Soil Science, 13, 46–51.

    Article  CAS  Google Scholar 

  • Westhuizen, G. C. A., & Eicker, A. (1991). The ‘Omajowa’ or ‘Termitenpilz’, Termitomyces sp. (Agaricales) of Namibia. South African Journal of Botany, 57, 67–70.

    Article  Google Scholar 

  • Wong, N., & Lee, C. Y. (2010). Influence of different substrate moistures on wood consumption and movement patterns of Microcerotermes crassus and Coptotermes gestroi (Blattodea: Termitidae, Rhinotermitidae). Journal of Economic Entomology, 103, 437–442.

    Article  PubMed  Google Scholar 

  • Wood, T. G. (1988). Termites and the soil environment. Biology and Fertility of Soils, 6, 228–236.

    Article  Google Scholar 

  • Wood, T. G. (1996). The agricultural importance of termites in the tropics. Agricultural Zoology Reviews, 7, 117–155.

    Google Scholar 

  • Zida, Z., Ouédraogo, E., Mando, A., & Stroosnijder, L. (2011). Termite and earthworm abundance and taxonomic richness under long-term conservation soil management in Saria, Burkina Faso, West Africa. Applied Soil Ecology, 51, 122–129.

    Article  Google Scholar 

  • Zimmerman, P. R., Greenberg, J. P., Wandiga, S. O., & Crutzen, P. J. (1982). Termites: A potentially large source of atmospheric methane, carbon dioxide, and molecular hydrogen. Science, 218, 563–565.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Aslam Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khan, M.A., Ahmad, W., Paul, B. (2018). Ecological Impacts of Termites. In: Khan, M., Ahmad, W. (eds) Termites and Sustainable Management. Sustainability in Plant and Crop Protection. Springer, Cham. https://doi.org/10.1007/978-3-319-72110-1_10

Download citation

Publish with us

Policies and ethics