Skip to main content

Termites: An Overview

  • Chapter
  • First Online:

Part of the book series: Sustainability in Plant and Crop Protection ((SUPP))

Abstract

A description of termite biology, distribution and diversity, economic importance, and sustainable management is presented. Liquid termiticide injection to soil, to establish a toxic or repellent chemical barrier against termites, is a traditional method applied for control. Baiting programs have been used successfully to eliminate subterranean termite colonies. Biological approaches along with entomophagy are also effective to manage termite population.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Imago: the last stage attained by an insect at the issue of metamorphosis.

  2. 2.

    Synapomorphy, presence of a shared derived character that characterizes a clade from other lineages.

References

  • Abe, T. (1987). Evolution of life types in termites. In S. Kawano, J. H. Connell, & T. Hidaka (Eds.), Evolution and coadaptation in biotic communities (pp. 125–148). Tokyo: University of Tokyo Press.

    Google Scholar 

  • Abensperg-Traun, M., Steven, D., & Atkins, L. (1996). The influence of plant diversity on the resilience of harvester termites to fire. Pacific Conservation Biology, 2, 279–285.

    Article  Google Scholar 

  • Acioli, A. N. S., & Constantino, R. (2015). A taxonomic revision of the neotropical termite genus Ruptitermes (Isoptera, Termitidae, Apicotermitinae). Zootaxa, 4032, 451–492.

    Article  PubMed  Google Scholar 

  • Affam, M., & Arhin, E. (2006). Use of termiteria as an additional geochemical sampling tool. Ghana Mining Journal, 8, 15–20.

    Google Scholar 

  • Alexander, J., Hague, J., Bongers, F., Imamura, Y., & Roberts, M. (2014). The resistance of Accoya® and Tricoya® to attack by wood-destroying fungi and termites. In Proceedings IRG annual meeting (pp. 1–10). The International Research Group on Wood Protection.

    Google Scholar 

  • Arhin, E., & Nude, P. M. (2010). Use of termitaria in surficial geochemical surveys: Evidence for >125-mu m size fractions as the appropriate media for gold exploration in northern Ghana. Geochemistry: Exploration, Environment, Analysis, 10, 401–406.

    CAS  Google Scholar 

  • Arhin, E., Boadi, S., & Esoah, M. C. (2015). Identifying pathfinder elements from termite mound samples for gold exploration in regolith complex terrain of the Lawra belt, NW Ghana. Journal of the African Earth Sciences, 109, 143–153.

    Article  CAS  Google Scholar 

  • Avitabile, S. C., Nimmo, D. G., Bennett, A. F., & Clarke, M. F. (2015). Termites are resistant to the effects of fire at multiple spatial scales. PLoS One, 10(11), e0140114.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baker, P. B., & Haverty, M. I. (2007). Foraging populations and distances of the desert subterranean termite, Heterotermes aureus (Isoptera: Rhinotermitidae), associated with structures in southern Arizona. Journal of Economic Entomology, 100, 1381–1390.

    Article  PubMed  Google Scholar 

  • Bandeira, A. G. (1983). Estrutura ecologica de comunidades de cupins (Insecta: Isoptera) na Zona Bragantina, Estaçao do Para. Tese de Doutorado. Instituto nacional de pesquisa da Amazonia (INPA), Manaus, p. 151.

    Google Scholar 

  • Bandeira, A. G., Vasconcellos, A., Silva, M., & Constantino, R. (2003). Effects of habitat disturbance on the termite fauna in a highland humid forest in the Caatinga domain, Brazil. Sociobiology, 42, 1–11.

    Google Scholar 

  • Behr, E. A., Behr, C. T., & Wilson, L. F. (1972). Influence of wood hardness on feeding by the eastern subterranean termite, Reticulitermes flavipes (Isoptera: Rhinotermitidae). Annals of the Entomological Society of America, 65, 457–460.

    Article  Google Scholar 

  • BenGuerrero, E., Arneodo, J., Bombarda, C. R., Abrao, O. P., Veneziano, L. M. T., Regiani, C. T., et al. (2015). Prospection and evaluation of (Hemi) Cellulolytic enzymes using untreated and pretreated biomasses in two Argentinean native termites. PLoS One, 10(8), e0136573.

    Article  CAS  Google Scholar 

  • Bignell, D. E., & Eggleton, P. (2000). Termites in ecosystems. In T. Abe, D. E. Bignell, & H. Higashi (Eds.), Termites: Evolution, sociality, symbiosis, ecology (pp. 363–387). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Bignell, D. E., Roisin, Y., & Lo, N. (2011). Biology of termites: A modern synthesis (p. 576). Dordrecht: Springer.

    Book  Google Scholar 

  • Billen, J. (2011). Exocrine glands and their key function in the communication system of social insects. Formosan Entomology, 31, 75–84.

    Google Scholar 

  • Blackburn, T. M., & Duncan, R. P. (2001). Determinants of establishment success in introduced birds. Nature, 414, 195–197.

    Article  CAS  PubMed  Google Scholar 

  • Bolton, B., & Fisher, B. L. (2008). Afrotropical ants of the ponerine genera Centromyrmex Mayr, Promyopias Santschi gen. rev. and Feroponera gen. n., with a revised key to genera of African Ponerinae (Hymenoptera: Formicidae). Zootaxa, 1929, 1–37.

    Google Scholar 

  • Bonachela, J. A., Pringle, R. M., Sheffer, E., Coverdale, T. C., Guyton, J. A., Caylor, K. K., Levin, S. A., & Tarnita, C. E. (2015). Termite mounds can increase the robustness of dryland ecosystems to climatic change. Science, 347, 651–655.

    Article  CAS  PubMed  Google Scholar 

  • Botch, P. S., Brennan, C. L., & Judd, T. M. (2010). Seasonal effects of calcium and phosphate on the feeding preference of the termite Reticulitermes flavipes (Isoptera: Rhinotermitidae). Sociobiology, 55, 42–56.

    Google Scholar 

  • Bourguignon, T., Sobotnık, J., Lepoint, G., Martin, J. M., & Roisin, Y. (2009). Niche differentiation among neotropical soldierless soil-feeding termites revealed by stable isotope ratios. Soil Biology and Biochemistry, 41, 2038–2043.

    Article  CAS  Google Scholar 

  • Bourguignon, T., Sobotnık, J., Dahlsjo, C. A. L., & Roisin, Y. (2016). The soldierless Apicotermitinae: Insights into a poorly known and ecologically dominant tropical taxon. Insects Sociaux, 63, 39–50.

    Article  Google Scholar 

  • Brauman, A. (2000). Effect of gut transit and mound deposit on soil organic matter transformations in the soil feeding termite: A review. European Journal of Soil Biology, 36, 117–125.

    Article  Google Scholar 

  • Brauman, A., Bignell, D. E., & Tayasu, I. (2000). Soil-feeding termites: Biology, microbial associations and digestive mechanisms. In T. Abe, D. E. Bignell, & M. Higashi (Eds.), Termites: evolution, sociality, symbioses, ecology (pp. 233–259). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Brody, A. K., Palmer, T. M., Fox-Dobbs, K., & Doak, D. F. (2010). Termites, vertebrate herbivores, and the fruiting success of Acacia drepanolobium. Ecology, 91, 399–407.

    Article  PubMed  Google Scholar 

  • Cao, R., & Su, N. Y. (2016). Temperature preferences of four subterranean termite species (Isoptera: Rhinotermitidae) and temperature dependent survivorship and wood consumption Rate. Annals of the Entomological Society of America, 109, 64–71.

    Article  Google Scholar 

  • Castillo, V. P., Sajap, A. S., & Sahri, M. H. (2013). Feeding response of subterranean termites Coptotermes curvignathus and Coptotermes gestroi (Blattodea: Rhinotermitidae) to baits supplemented with sugars, amino acids, and cassava. Journal of Economic Entomology, 106, 1794–1801.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Z., Qu, Y., Xiao, D., Song, L., Zhang, S., Gao, X., Desneux, N., & Song, D. (2015). Lethal and social mediated effects of ten insecticides on the subterranean termite Reticulitermes speratu. Journal of Pest Science, 88, 741–751.

    Article  Google Scholar 

  • Chiu, C. I., Yang, M. M., & Li, H. F. (2015). Structure and function of subterranean gallery systems of soil feeding termites Pericapritermes nitobei and Sinocapritermes mushae. Insectes Sociaux, 62, 393–400.

    Article  Google Scholar 

  • Chouvenc, T., & Su, N. Y. (2014). Colony age-dependent pathway in caste development of Coptotermes formosanus Shiraki. Insectes Sociaux, 61, 171–182.

    Article  Google Scholar 

  • Chouvenc, T., Helmick, E. E., & NY, S. (2015). Hybridization of two major termite invaders as a consequence of human activity. PLoS One, 10, e0120745.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chouvenc, T., Scheffrahn, R. H., & NY, S. (2016). Establishment and spread of two invasive subterranean termite species (Coptotermes formosanus Shiraki and C. gestroi (Wasmann) Isoptera: Rhinotermitidae) in metropolitan southeastern Florida (1990–2015). Florida Entomologist, 99, 187–191.

    Article  Google Scholar 

  • Chunco, A. J. (2014). Hybridization in a warmer world. Ecology and Evolution, 4, 2019–2031.

    Article  PubMed  PubMed Central  Google Scholar 

  • Collins, N. M. (1984). The termites (Isoptera) of the Gunung Mulu National Park, with a key to the genera known from Sarawak. Sarawak Museum Journal, 30, 65–87.

    Google Scholar 

  • Corn, M. L, & Johnson, R. (2013). Invasive species: Major laws and the role of selected federal agencies (US Congressional Research Report, R43258).

    Google Scholar 

  • Cornelius, M. L. (2012). Individual behavior of workers of the Formosan subterranean termite (Isoptera: Rhinotermitidae) on consecutive days of tunnel construction. Insects, 3, 367–377.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cornelius, M. L., & Gallatin, E. M. (2015). Task allocation in the tunneling behavior of workers of the Formosan subterranean termite, Coptotermes formosanus Shiraki. Journal of Asia-Pacific Entomology, 18, 637–642.

    Article  Google Scholar 

  • Cornelius, M. L., & Osbrink, W. L. A. (2011). Influence of dry soil on the ability of Formosan subterranean termites, Coptotermes formosanus, to locate food sources. Journal of Insect Science, 11, 162.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cornelius, M. L., & Osbrink, W. L. A. (2015). Natural resistance of exotic wood species to the Formosan subterranean termite (Isoptera: Rhinotermitidae). International Biodeterioration and Biodegradation, 101, 8–11.

    Article  CAS  Google Scholar 

  • Costa-Leonardo, A. M., & Haifig, I. (2014). Termite communication during different behavioral activities. In G. Witzany (Ed.), Biocommunication of animals (pp. 161–190). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Curl, G. (2004). Pumped-up termite market. Pest Control Technology, 32(26), 28–33.

    Google Scholar 

  • Davies, A. B., Parr, C. L., & VanRensburg, B. J. (2010). Termites and fire: Current understanding and future research directions for improved savanna conservation. Austral Ecology, 35, 482–486.

    Article  Google Scholar 

  • Davies, A. B., Levick, S. R., Asner, G. P., Robertson, M. P., Van Rensburg, B. J., & Parr, C. L. (2014a). Spatial variability and abiotic determinants of termite mounds throughout a savanna catchment. Ecography, 37, 852–862.

    Article  Google Scholar 

  • Davies, A. B., Robertson, M. P., Levick, S. R., Asner, G. P., VanRensburg, B. J., & Parr, C. L. (2014b). Variable effects of termite mounds on African savanna grass communities across a rainfall gradient. Journal of Vegetation Science, 25, 1405–1416.

    Article  Google Scholar 

  • DeHeer, C. J., & Vargo, E. L. (2008). Strong mitochondrial DNA similarity but low relatedness at microsatellite loci among families within fused colonies of the termite Reticulitermes flavipes. Insectes Sociaux, 55, 190–199.

    Article  Google Scholar 

  • Dejean, A., Lachaud, J. P., & Beugnon, G. (1993). Efficiency in the exploitation of patchy environments by the ponerine ant Paltothyreus tarsatus: An ecological consequence of the flexibility of prey capture behavior. Journal of Ethology, 11, 43–53.

    Article  Google Scholar 

  • Dejean, A., Schatz, B., Orivel, J., Beugnon, G., Lachaud, J. P., & Corbara, B. (1999). Feeding preferences in African ponerine ants: A cafeteria experiment (Hymenoptera: Formicidae). Sociobiology, 34, 555–568.

    Google Scholar 

  • Delaplane, K. S., & LaFage, J. P. (1989). Foraging tenacity of Reticulitermes flavipes and Coptotermes formosanus (Isoptera: Rhinotermitidae). Sociobiology, 16, 183–189.

    Google Scholar 

  • Deligne, J., Quennedey, A., & Blum, M. S. (1981). The enemies and defense mechanisms of termites. In H. R. Hermann (Ed.), Social insects (Vol. 2, pp. 1–76). New York: Academic.

    Google Scholar 

  • Diehl, E., Diehl-Fleig, E., & Junqueira, L. K. (2015). Absence of relationship among termite (Insecta: Isoptera) richness, functional groups and environmental variables in Southern Brazil. EntomoBrasilis, 8, 168–173.

    Article  Google Scholar 

  • Dinesh, A. S., & Venkatesha, M. G. (2013). Analysis of the territorial, courtship and coupling behavior of the hemipterophagous butterfly, Spalgis epius (Westwood) (Lepidoptera: Lycaenidae). Journal of Insect Behavior, 26, 149–164.

    Article  Google Scholar 

  • Diouf, M., Roy, V., Mora, P., Frechault, S., Lefebvre, T., Herve, V., et al. (2015). Profiling the succession of bacterial communities throughout the life stages of a higher termite Nasutitermes arborum (Termitidae, Nasutitermitinae) using 16S rRNA gene pyrosequencing. PLoS One, 10(10), e0140014.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Djernaes, M., Klass, K. D., & Eggleton, P. (2015). Identifying possible sister groups of Cryptocercidae+Isoptera: A combined molecular and morphological phylogeny of Dictyoptera. Molecular Phylogenetics and Evolution, 84, 284–303.

    Article  PubMed  Google Scholar 

  • Du, H., Chouvenc, T., Osbrink, W. L. A., & NY, S. (2016). Social interactions in the central nest of Coptotermes formosanus juvenile colonies. Insectes Sociaux, 63, 279–290.

    Article  Google Scholar 

  • Eger, J. E., Jr., Lees, M. D., Neese, P. A., Atkinson, T. H., Thoms, E. M., Messenger, M. T., Demark, J. J., Lee, L. C., Vargo, E. L., & Tolley, M. P. (2012). Elimination of subterranean termite (Isoptera: Rhinotermitidae) colonies using a refined cellulose bait matrix containing noviflumuron when monitored and replenished quarterly. Journal of Economic Entomology, 105, 533–539.

    Article  PubMed  Google Scholar 

  • Eggleton, P. (2000). Global patterns of termite diversity. In T. Abe, D. E. Bignell, & M. Higashi (Eds.), Termites: Evolution, sociality, symbiosis, ecology (pp. 25–51). Dordrecht: Kluwer Academic Publisher.

    Chapter  Google Scholar 

  • Eggleton, P. (2011). An introduction to termites: Biology taxonomy and functional morphology. In D. E. Bignell, Y. Roisin, & N. Lo (Eds.), Biology of termites: A modern synthesis (pp. 1–26). Dordrecht: Springer.

    Google Scholar 

  • Eggleton, P., & Bignell, D. E. (1997). Secondary occupation of epigeal termite (Isoptera) mounds by other termites in the Mbalmayo Forest Reserve, southern Cameroon, and its biological significance. Journal of African Zoology, 111, 489–498.

    Google Scholar 

  • Eggleton, P., Bignell, D. E., Sands, W. A., Mawdsley, N. A., Lawton, J. H., Wood, T. G., & Bignell, N. C. (1996). The diversity, abundance and biomass of termites under differing levels of disturbance in the Mbalmayo Forest Reserve, southern Cameroon. Philosophical Transactions of the Royal Society of London. Series B-Biolgical Science, 351, 51–68.

    Article  Google Scholar 

  • Eggleton, P., Homathevi, R., Jeeva, D., Jones, D. T., Davies, R. G., & Maryati, M. (1997). The species richness and composition of termites (Isoptera) in primary and regenerating lowland Dipterocarp forest in Sabah, East Malaysia. Ecotropica, 3, 119–128.

    Google Scholar 

  • Ellwood, M. D. F., Jones, D. T., & Foster, W. A. (2002). Canopy ferns in lowland dipterocarp forest support a prolific abundance of ants, termites and other invertebrates. Biotropica, 34, 575–583.

    Article  Google Scholar 

  • Emerson, A. E. (1925). The termites of Kartabo, Bartica District, British Guiana. Zoologica, 6, 291–459.

    Google Scholar 

  • Ettershank, G., Etiershank, J. A., & Whiteford, W. G. (1980). Location of food sources by subterranean termites. Environmental Entomology, 9, 645–648.

    Article  Google Scholar 

  • Evans, T. A. (2002). Assessing efficacy of Termatrac™; A new microwave based technology for non-destructive detection of termites (Isoptera). Sociobiology, 40, 575–583.

    Google Scholar 

  • Evans, T. A., & Gleeson, P. V. (2001). Seasonal and daily activity patterns of subterranean, wood-eating termite foragers. Australian Journal of Zoology, 49, 311–321.

    Article  Google Scholar 

  • Evans, T. A., Forschler, B. T., & Grace, J. K. (2013). Biology of invasive termites: A worldwide review. Annual Review of Entomology, 58, 455–474.

    Article  CAS  PubMed  Google Scholar 

  • Fei, H., & Henderson, G. (2002). Formosan subterranean termite (Isoptera: Rhinotermitidae) wood consumption and worker survival as affected by temperature and soldier proportion. Environmental Entomology, 31, 509–514.

    Article  Google Scholar 

  • Figueiredo, R. E. C. R., Vasconcellos, A., Policarpo, I. S., & Alves, R. R. N. (2015). Edible and medicinal termites: A global overview. Journal of Ethnobiology and Ethnomedicine, 11, 29.

    Article  PubMed  PubMed Central  Google Scholar 

  • Forschler, B. T., & Jenkins, T. M. (2000). Subterranean termites in the urban landscape: Understanding their social structure is the key to successfully implementing population management using bait technology. Urban Ecosystems, 4, 231–251.

    Article  Google Scholar 

  • Forschler, B. T., & Lewis, V. R. (1997). Why termites can dodge your treatment. Pest Control, 65(42–46), 53.

    Google Scholar 

  • Garnier-Sillam, E., & Harry, M. (1995). Distribution of humic compounds in mounds of some soil-feeding termite species of tropical rainforests: Its influence on soil structure stability. Insectes Sociaux, 42, 167–185.

    Article  Google Scholar 

  • Gautam, B. K., & Henderson, G. (2011). Effects of sand moisture level on food consumption and distribution of Formosan subterranean termites (Isoptera: Rhinotermitidae) with different soldier proportions. Journal of Entomological Science, 46, 1–13.

    Article  Google Scholar 

  • Gautam, B. K., & Henderson, G. (2012). Escape behavior of the Formosan subterranean termite (Isoptera: Rhinotermitidae) in Response to disturbance. Journal of Insect Behavior, 25, 70–79.

    Article  Google Scholar 

  • Gautam, B. K., Henderson, G., & Wang, C. (2014). Localized treatments using commercial dust and liquid formulations of fipronil against Coptotermes formosanus (Isoptera: Rhinotermitidae) in the laboratory. Insect Science, 21, 174–180.

    Article  CAS  PubMed  Google Scholar 

  • Gay, F. J. (1969). Species introduced by man. In K. Krishna & F. M. Weesner (Eds.), Biology of termites (Vol. I, pp. 459–494). New York: Academic.

    Chapter  Google Scholar 

  • Goncalves, T. T., JrReis, R., DeSouza, O., & Ribeiro, S. P. (2005). Predation and interference competition between ants (Hymenoptera: Formicidae) and arboreal termites (Isoptera: Termitidae). Sociobiology, 46, 1–12.

    Google Scholar 

  • Grace, J. K. (2014). Invasive termites revisited: Coptotermes gestroi meets Coptotermes formosanus. In Proceedings of the 10th Pacific-rim termite research group conference (Vol. 1, pp. 1–7).

    Google Scholar 

  • Haddada, C. R., Brabecb, M., Pekarc, S., & Fouriea, R. (2016). Seasonal population dynamics of a specialized termite-eating spider (Araneae: Ammoxenidae) and its prey (Isoptera: Hodotermitidae). Pedobiologia, 59, 105–110.

    Article  Google Scholar 

  • Haifig, I., Vargo, E. L., Labadie, P., & Costa-Leonardo, A. M. (2016). Unrelated secondary reproductives in the neotropical termite Silvestritermes euamignathus (Isoptera: Termitidae). The Science of Nature, 103, 9.

    Article  PubMed  CAS  Google Scholar 

  • Haslem, A., Kelly, L. T., Nimmo, D. G., Watson, S. J., Kenny, S. A., Taylor, R. S., Avitabile, S. C., Callister, K. E., Spence-Bailey, L. M., Clarke, M. F., & Bennett, A. F. (2011). Habitat or fuel? Implications of long-term, post-fire dynamics for the development of key resources for fauna and fire. Journal of Applied Ecology, 48, 247–256.

    Article  Google Scholar 

  • Haverty, M. I. (1977). The proportion of soldiers in termite colonies: A list and a bibliography. Sociobiology, 2, 199–216.

    Google Scholar 

  • Haverty, M. I., LaFage, J. P., & Nutting, W. L. (1974). Seasonal activity and environmental control of foraging of the subterranean termite, Heterotermes aureus (Snyder), in a desert grassland. Life Sciences, 15, 1091–1101.

    Article  CAS  PubMed  Google Scholar 

  • Henderson, G. (1996). Alate production, flight phenology, and sex-ratio in Coptotermes formosanus Shiraki, an introduced subterranean termite in New Orleans, Louisiana. Sociobiology, 28, 319–326.

    Google Scholar 

  • Henderson, G. (2001). Practical considerations of the Formosan subterranean termite in Louisiana: A 50-year old problem. Sociobiology, 37, 281–292.

    Google Scholar 

  • Hochmair, H. H., & Scheffrahn, R. H. (2010). Spatial association of marine dockage with land-borne infestations of invasive termites (Isoptera: Rhinotermitidae: Coptotermes) in urban south Florida. Journal of Economic Entomology, 103, 1338–1346.

    Article  PubMed  Google Scholar 

  • Holmgren, N. (1912). Termitenstudien. 3. Systematik der Termiten. Die Familie Metatermitidae. Kungl. Svenska Vetenskapakad Handl, 48, 1–166.

    Google Scholar 

  • Holt, J. A., & Lepage, M. (2000). Termites and soil properties. In T. Abe, M. Higashi, & D. E. Bignell (Eds.), Termites: Evolution, sociality, symbiosis, ecology (pp. 389–407). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Holway, D. A. (1998). Factors governing the rate of invasion: A natural experiment using Argentine ants. Oecologia, 115, 206–212.

    Article  PubMed  Google Scholar 

  • Howard, R., & Haverty, M. I. (1981). Seasonal variations in caste proportions of field colonies of Reticulitermes flavipes (Kollar). Environmental Entomology, 10, 546–549.

    Article  Google Scholar 

  • Hu, X. P., Song, D. L., & Scherer, C. W. (2005). Transfer of indoxacarb among workers of Coptotermes formosanus (Isoptera: Rhinotermitidae): Effects of dose, donor: recipient ratio and post-exposure time. Pest Management Science, 61, 1209–1214.

    Article  CAS  PubMed  Google Scholar 

  • Indrayani, Y., Yoshimura, T., Yanase, Y., Fujii, Y., Matsuoka, H., & Imamura, Y. (2007). Observation of feeding behavior of three termite (Isoptera) species: Incisitermes minor, Coptotermes formosanus, and Reticulitermes speratus. Sociobiology, 49, 121–134.

    Google Scholar 

  • Inoue, T., Takematsu, Y., Hyodo, F., Sugimoto, A., Yamada, A., Klangkaew, C., Kirtibutr, N., & Abe, T. (2001). The abundance and biomass of subterranean termites (Isoptera) in a dry evergreen forest of northeast Thailand. Sociobiology, 37, 41–52.

    Google Scholar 

  • Inward, D. J. G., Vogler, A. P., & Eggleton, P. (2007a). A comprehensive phylogenetic analysis of termites (Isoptera) illuminates key aspects of their evolutionary biology. Molecular Phylogenetics and Evolution, 44, 953–967.

    Article  CAS  PubMed  Google Scholar 

  • Inward, D., Beccaloni, G., & Eggleton, P. (2007b). Death of an order: A comprehensive molecular phylogenetic study confirms that termites are eusocial cockroaches. Biology Letters, 3, 331–335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jayasuriya, A., & Traniello, J. F. A. (1985). The biology of the primitive ant Aneuretus simoni (Emery) (Formicidae: Aneuretinae) I. Distribution, abundance, colony structure, and foraging ecology. Insectes Sociaux, 32, 363–374.

    Article  Google Scholar 

  • Jenkins, T. M., Verkerk, R., Dean, R., & Forschler, B. T. (2001). Phylogenetic analyses of two mitochondrial and one nuclear intron region illuminate European subterranean termite (Isoptera: Rhinotermitidae) taxonomy and gene flow. Molecular Phylogenetics and Evolution, 20, 286–293.

    Article  CAS  PubMed  Google Scholar 

  • Jones, D. T., & Eggleton, P. (2000). Sampling termite assemblages in tropical forests: Testing a rapid biodiversity assessment protocol. Journal of Applied Ecology, 37, 191–203.

    Article  Google Scholar 

  • Joseph, G., Seymour, C., Cumming, G., Cumming, D. M., & Mahlangu, Z. (2014). Termite mounds increase functional diversity of woody plants in African savannas. Ecosystems, 17, 808–819.

    Article  CAS  Google Scholar 

  • Joshi, P. K., Singh, N. P., Singh, N. N., Gerpacio, R. V., & Pingali, P. L. (2005). Maize in India: Production systems, constraints, and research priorities (p. 22). Mexico: DF CIMMYT.

    Google Scholar 

  • Kinyuru, J. N., Konyole, S. O., Roos, N., Onyango, C. A., Owino, V. O., Owuor, B. O., Estambale, B. B., Friis, H., Aagaard-Hansen, J., Kenji, G. M., & Glaston, M. (2013). Nutrient composition of four species of winged termites consumed in western Kenya. Journal of Food Composition and Analysis, 30, 120–124.

    Article  CAS  Google Scholar 

  • Koehler, P. G. (1980). The Formosan subterranean termite. Florida Cooperative Extension Service, Circular ENT-51.

    Google Scholar 

  • Krishna, K., Grimaldi, D. A., Krishna, V., & Engel, M. S. (2013a). Treatise on the Isoptera of the World: Vol. 1. Bulletin of the American Museum of Natural History, 377, 1–200.

    Article  Google Scholar 

  • Krishna, K., Grimaldi, D. A., Krishna, V., & Engel, M. S. (2013b). Treatise on the Isoptera of the world: Vol. 3. Bulletin of the American Museum of Natural History, 377, 623–973.

    Article  Google Scholar 

  • Lee, C. Y. (2002). Subterranean termite pests and their control in the urban environment in Malaysia. Sociobiology, 40, 3–9.

    Google Scholar 

  • Lee, K. E., & Wood, T. G. (1971). Termites and soils (p. 251). New York: Academic.

    Google Scholar 

  • Legendre, F., Whiting, M. F., Bordereau, C., Cancello, E. M., Evans, T. A., & Grandcolas, P. (2008). The phylogeny of termites (Dictyoptera: Isoptera) based on mitochondrial and nuclear markers: Implications for the evolution of the worker and pseudergate castes, and foraging behaviors. Molecular Phylogenetics and Evolution, 48, 615–627.

    Article  CAS  PubMed  Google Scholar 

  • Levick, S. R., Asner, G. P., Kennedy-Bowdoin, T., & Knapp, D. E. (2010). The spatial extent of termite influences on herbivore browsing in an African savanna. Biological Conservation, 143, 2462–2467.

    Article  Google Scholar 

  • Lewis, V. R. (1997). Alternative control strategies for termites. Journal of Agricultural Entomology, 14, 291–307.

    Google Scholar 

  • Li, H. F., & Su, N. Y. (2008). Sand displacement during tunnel excavation by the Formosan subterranean termite (Isoptera: Rhinotermitidae). Annals of the Entomological Society of America, 101, 456–462.

    Article  Google Scholar 

  • Lima, J. T., & Costa-Leonardo, A. M. (2007). Food resources explored by termites (Insecta: Isoptera). Biota Neotropica, 7, 243–250.

    Article  Google Scholar 

  • Lo, N., Tokuda, G., Watanabe, H., Rose, H., Slaytor, M., Maekawa, K., Bandi, C., & Noda, H. (2000). Evidence from multiple gene sequences indicates that termites evolved from wood-feeding cockroaches. Current Biology, 10, 801–804.

    Article  CAS  PubMed  Google Scholar 

  • Longhurst, C., Johnson, R. A., & Wood, T. G. (1979). Foraging, recruitment and predation by Decamorium uelense (Sanstchi) (Formicidae: Myrmicinae) on termites in southern Guinea savanna, Nigeria. Oecologia, 38, 83–91.

    Article  CAS  PubMed  Google Scholar 

  • Manzoor, F. (2013). Biosensors for termite control. IOP Conference Series: Materials Science and Engineering, 51(012014), 1–3. https://doi.org/10.1088/1757-899X/51/1/012014.

    Google Scholar 

  • Mauchline, A. L., Osborne, J. L., Martin, A. P., Poppy, G. M., & Powell, W. (2005). The effects of non-host plant essential oil volatiles on the behavior of the pollen beetle Meligethes aeneus. Entomologia Experimentalis et Applicata, 114, 181–188.

    Article  CAS  Google Scholar 

  • McCain, C. M. (2009). Global analysis of bird elevational diversity. Global Ecology and Biogeography, 18, 346–360.

    Article  Google Scholar 

  • McManamy, K., Koehler, P. G., Branscome, D. D., & Pereira, R. M. (2008). Wood moisture content affects the survival of Eastern subterranean termites (Isoptera: Rhinotermitidae), under saturated relative humidity conditions. Sociobiology, 52, 145–156.

    Google Scholar 

  • Melo, A. C. S., & Bandeira, A. G. (2004). A qualitative and quantitative survey of termites (Isoptera) in an open shrubby caatinga in northeast of Brazil. Sociobiology, 44, 707–716.

    Google Scholar 

  • Messenger, M. T., & Su, N. Y. (2005). Colony characteristics and seasonal activity of the Formosan subterranean termite (Isoptera: Rhinotermitidae) in Louis Armstrong Park, New Orleans, Louisiana. Journal of Entomological Science, 40, 268–279.

    Article  Google Scholar 

  • Moe, S. R., Mobæk, R., & Narmo, A. K. (2009). Mound building termites contribute to savanna vegetation heterogeneity. Plant Ecology, 202, 31–40.

    Article  Google Scholar 

  • Moore, B. P. (1969). Biochemical studies in termites. In K. Krishna & F. M. Weesner (Eds.), Biology of the termites (Vol. 1, pp. 407–432). New York: Academic.

    Chapter  Google Scholar 

  • Mullins, A. J., Messenger, M. T., Hochmair, H. H., Tonini, F., NY, S., & Riegel, C. (2015). Dispersal flights of the Formosan subterranean termite (Isoptera: Rhinotermitidae). Journal of Economic Entomology, 108, 707–719.

    Article  PubMed  Google Scholar 

  • Myles, T. G., Borges, A., Ferreira, M., Guerreiro, O., & Borges, P. A. V. (2007). Eficácia de Diferentes Insecticidas no Combate à Cryptotermes brevis. In P. A. V. Borges & T. Myles (Eds.), Térmitas dos Açores (pp. 62–75). Princípia: Lisboa.

    Google Scholar 

  • Nakayama, T., Yoshimura, T., & Imamura, Y. (2004). The optimum temperature-humidity combination for the feeding activities of Japanese subterranean termites. Journal of Wood Science, 50, 530–534.

    Google Scholar 

  • Noirot, C. (2001). The gut of termites (Isoptera) comparative anatomy, systematics, phylogeny. II. – Higher termites (Termitidae). Annales de la Societe Entomologique de France, 37, 431–471.

    Google Scholar 

  • Noirot, C., & Darlington, J. P. E. C. (2000). Termite nests: Architecture, regulation and defence. In T. Abe, D. E. Bignell, & M. Higashi (Eds.), Termites: Evolution, sociality, symbioses, ecology (pp. 121–139). Dordrecht: Kluwer Academic.

    Chapter  Google Scholar 

  • Ohkuma, M. (2003). Termite symbiotic systems: Efficient bio-recycling of lignocellulose. Applied Microbiology and Biotechnology, 61, 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Ohkuma, M., & Brune, A. (2011). Diversity, structure, and evolution of the termite gut microbial community. In D. E. Bignell, Y. Roisin, & N. Lo (Eds.), Biology of termites: A modern synthesis (pp. 413–438). Dordrecht: Springer.

    Google Scholar 

  • Oliver-Villanueva, J. V., & Abian-Perez, M. A. (2012). Advanced wireless sensors for termite detection in wood constructions. Wood Science and Technology, 47, 269–280.

    Article  CAS  Google Scholar 

  • Paul, B. B., & Rueben, J. M. (2005). Arizona termites of economic importance (pp. 9–17). Tucson: University of Arizona Press.

    Google Scholar 

  • Pearce, M. J. (1997). Termite biology and behavior. In M. J. Pearce (Ed.), Termites: Biology and pest management (pp. 53–55). Wallingford: CAB International.

    Google Scholar 

  • Pequeno, P. A. C. L., & Pantoja, P. O. (2012). Negative effects of Azteca ants on the distribution of the termite Neocapritermes braziliensis in central Amazonia. Sociobiology, 59, 893–902.

    Google Scholar 

  • Petrakova, L., Liznarova, E., Pekar, S., Haddad, C. R., Sentenska, L., & Symondson, W. O. C. (2015). Discovery of a monophagous true predator, a specialist termite-eating spider (Araneae: Ammoxenidae). Scientific Reports, 5, 14013.

    Article  PubMed  PubMed Central  Google Scholar 

  • Potter, M. F., & Hillery, A. E. (2002). Exterior-targeted liquid termiticides: An alternative approach to managing subterranean termites (Isoptera: Rhinotermitidae) in buildings. Sociobiology, 39, 373–405.

    Google Scholar 

  • Prestwich, G. D. (1984). Defense mechanisms of termites. Annual Review of Entomology, 29, 201–232.

    Article  CAS  Google Scholar 

  • Rahman, N. A., Parks, D. H., Wilnlner, D. L., Engelbrektson, A. L., Goffredi, S. K., Warnecke, F., Scheffrahn, R. H., & Hugenholtz, P. (2015). A molecular survey of the Australian and North American termite genera indicates that vertical inheritance is the primary force shaping termite gut microbes. Microbiome, 3, 5. https://doi.org/10.1186/s40168-015-0067-8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Remmen, L. N., & Su, N. Y. (2005). Time trends in mortality for thiamethoxam and fipronil against Formosan subterranean termites and eastern subterranean termites (Isoptera: Rhinotermitidae). Journal of Economic Entomology, 98, 911–915.

    Article  CAS  PubMed  Google Scholar 

  • Richard, F. J., & Hunt, J. H. (2013). Intracolony chemical communication in social insects. Insectes Sociaux, 60, 275–291.

    Article  Google Scholar 

  • Roisin, Y. (2000). Diversity and evolution of caste patterns. In T. Abe, D. E. Bignell, & M. Higashi (Eds.), Termites: Evolution, sociality, symbioses, ecology (pp. 95–119). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Roisin, Y., & Pasteels, J. M. (1985). Imaginal polymorphism and polygyny in the Neo-Guinean termite Nasutitermes princeps (Desneux). Insectes Sociaux, 32, 140–157.

    Article  Google Scholar 

  • Rosengaus, R. B., & Traniello, J. F. A. (1991). Biparental care in incipient colonies of the dampwood termite Zootermopsis angusticollis Hagen (Isoptera: Termopsidae). Journal of Insect Behavior, 4, 633–647.

    Article  Google Scholar 

  • Ruan, G., Song, X., Hu, Y., Han, N., & Zhang, D. (2015). Foraging activities of Coptotermes formosanus in subtropical areas in China. Journal of Economic Entomology, 108, 701–706.

    Article  PubMed  Google Scholar 

  • Rust, M. K., & Su, N. Y. (2012). Managing social insects of urban importance. Annual Review of Entomology, 57, 355–375.

    Article  CAS  PubMed  Google Scholar 

  • Sax, D. F., & Brown, J. H. (2000). The paradox of invasion. Global Ecology and Biogeography, 9, 363–371.

    Article  Google Scholar 

  • Scharf, M. E. (2015). Omic research in termites: An overview and a roadmap. Frontiers in Genetics, 6, 76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Scharf, M. E., Karl, Z. J., Sethi, A., & Boucias, D. G. (2011). Multiple levels of synergistic collaboration in termite lignocellulose digestion. PLoS One, 6, e21709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schatz, B., Orivel, J., Lachaud, J. P., Beugnon, G., & Dejean, A. (1999). Sitemate recognition: The case of Anochetus traegordhi (Hymenoptera; Formicidae) preying on Nasutitermes (Isoptera: Termitidae). Sociobiology, 34, 569–580.

    Google Scholar 

  • Scheffrahn, R. H. (2013). Overview and current status of non-native termites (Isoptera) in Florida. Florida Entomologist, 96, 781–788.

    Article  Google Scholar 

  • Scheffrahn, R. H., & Crowe, W. (2011). Ship-borne termite (Isoptera) border interceptions in Australia and onboard infestations in Florida, 1986–2009. The Florida Entomologist, 94, 57–63.

    Article  Google Scholar 

  • Scheffrahn, R. H., Mangold, J. R., & NY, S. (1988). A survey of structure-infesting termites of peninsular Florida. The Florida Entomologist, 71, 615–630.

    Article  Google Scholar 

  • Scheffrahn, R. H., Carrijo, T. F., Krecek, J., Su, N. Y., Szalanski, A. L., Austin, J. W., Chase, J. A., & Mangold, J. R. (2015). A single endemic and three exotic species of the termite genus Coptotermes (Isoptera, Rhinotermitidae) in the New World. Arthropod Systematics and Phylogeny, 73, 333–348.

    Google Scholar 

  • Schoning, C., & Moffett, M. W. (2007). Driver ants invading a termite nest: Why do the most catholic predators of all seldom take this abundant prey? Biotropica, 39, 663–667.

    Article  Google Scholar 

  • Seeley, T. D. (1982). Adaptive significance of the age polyethism schedule in honeybee colonies. Behavioral Ecology and Sociobiology, 11, 287–293.

    Article  Google Scholar 

  • Sen-Sarma, P. K., & Mishra, S. C. (1968). Seasonal variation of nest population in Microcerotermes beesoni Snyder. Forest Entomology Branch, Forest Research Institute, Dehra Dun, 35, 361–367.

    Google Scholar 

  • Shelton, T. G., & Grace, J. K. (2003). Effects of exposure duration on transfer of nonrepellent termiticides among workers of Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae). Journal of Economic Entomology, 96, 456–460.

    Article  CAS  PubMed  Google Scholar 

  • Sileshi, G. W., Arshad, M. A., Konate, S., & Nkunika, P. O. Y. (2010). Termite-induced heterogeneity in African savanna vegetation: Mechanisms and patterns. Journal of Vegetation Science, 21, 923–937.

    Article  Google Scholar 

  • Snyder, T. E. (1926). Termites collected on the Mulford biological exploration to the Amazon Basin, 1921–1922. Proceedings of the United States National Museum, 68, 1–76.

    Article  Google Scholar 

  • Sobotnik, J., Jirosova, A., & Hanus, R. (2010). Chemical warfare in termites. Journal of Insect Physiology, 56, 1012–1021.

    Article  CAS  PubMed  Google Scholar 

  • Sobotnik, J., Bourguignon, T., Hanus, R., Demianova, Z., Pytelkova, J., Mares, M., Foltynova, P., Preisler, J., Cvacka, J., Krasulova, J., & Roisin, Y. (2012). Explosive backpacks in old termite workers. Science, 33, 436.

    Article  CAS  Google Scholar 

  • Souza, O. F. F., & Brown, V. K. (1994). Effects of habitat fragmentation on Amazonian termite communities. Journal of Tropical Ecology, 10, 197–206.

    Article  Google Scholar 

  • Srivastava, S. K., Babu, N., & Pandey, H. (2009). Traditional insect bioprospecting-As human food and medicine. Indian Journal of Traditional Knowledge, 8, 485–494.

    Google Scholar 

  • Su, N. Y., & Scheffrahn, R. H. (1988). Foraging population and territory of the Formosan subterranean termite (Isoptera: Rhinotermitidae) in an urban environment. Sociobiology, 14, 353–360.

    Google Scholar 

  • Su, N. Y., & Scheffrahn, R. H. (1990). Economically important termites in the United States and their control. Sociobiology, 17, 77–94.

    Google Scholar 

  • Su, N. Y., & Scheffrahn, R. H. (1998). A review of subterranean termite control practices and prospects for integrated pest management programmes. Integrated Pest Management Reviews, 3, 1–13.

    Article  Google Scholar 

  • Su, N. Y., & Scheffrahn, R. (2000). Termites as pests of buildings. In T. Abe, D. Bignell, & M. Higashi (Eds.), Termites: Evolution, sociality, symbioses, ecology (pp. 437–453). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Su, N. Y., & Tamashiro, M. (1987). An overview of the Formosan subterranean termite, Coptotermes formosanus (Isoptera: Rhinotermitidae) in the world. In: M. Tamashiro & N. Y. Su (Eds.), Proceedings of the international symposium on the Formosan subterranean termite, College of Tropical Agriculture and Human Resources, University of Hawaii, Research Extension Series 083, Honolulu, Hawaii. pp. 3–15.

    Google Scholar 

  • Su, N. Y., Thoms, E. M., Ban, P. M., & Scheffrahn, R. H. (1995). A monitoring/baiting station to detect and eliminate foraging populations of subterranean termites (Isoptera: Rhinotermitidae) near structures. Journal of Economic Entomology, 88, 932–936.

    Article  Google Scholar 

  • Su, N. Y., Scheffrahn, R. H., & Weissling, T. (1997). A new introduction of a subterranean termite, Coptotermes havilandi Holmgren (Isoptera: Rhinotermitidae) in Miami, Florida. The Florida Entomologist, 80, 408–411.

    Article  Google Scholar 

  • Tamashiro, M., Yates, J. R., Lai, P. Y., Fuji, J. K., & Su, N. Y. (1980). Size and structure of Coptotermus formosanus Shiraki colonies in Hawaii. In: Proceedings of the 16th International Congress of Entomology (p. 311). Kyoto: Japan Publications Trading Tokyo.

    Google Scholar 

  • Thorne, B. (1998). Biology of subterranean termites of the genus Reticulitermes. InNPCA research report on subterranean termites (pp. 1–30). Dunn Loring: National Pest Control Association.

    Google Scholar 

  • Thorne, B. L., & Breisch, N. L. (2001). Effects of sublethal exposure to imidacloprid on subsequent behavior of subterranean termite Reticulitermes virginicus (Isoptera: Rhinotermitidae). Journal of Economic Entomology, 94, 492–498.

    Article  CAS  PubMed  Google Scholar 

  • Traore, S., Nygard, R., Guinko, S., & Lepage, M. (2008). Impact of Macrotermes termitaria as a source of heterogeneity on tree diversity and structure in a Sudanian savanna under controlled grazing and annual prescribed fire (Burkina Faso). Forest Ecology and Management, 255, 2337–2346.

    Article  Google Scholar 

  • Valles, S. M., & Woodson, W. D. (2002). Group effects on insecticide toxicity in workers of the Formosan subterranean termite, Coptotermes formosanus Shiraki. Pest Management Science, 58, 769–774.

    Article  CAS  PubMed  Google Scholar 

  • Vargo, E. L., & Husseneder, C. (2011). Genetic structure of termite colonies and populations. In D. E. Bignell, Y. Roisin, & N. Lo (Eds.), Biology of termites: A modern synthesis (pp. 321–347). Dordrecht: Springer.

    Google Scholar 

  • Vasconcellos, A. (2010). Biomass and abundance of termites in three remnant areas of Atlantic Forest in northeastern Brazil. Revista Brasileira de Entomologia, 54, 455–461.

    Article  Google Scholar 

  • Vasconcellos, A., & Moura, F. M. S. (2010). Wood litter consumption by three species of termite Nasutitermes in an area of Atlantic Forest in northeastern Brazil. Journal of Insect Science, 10, 1–9.

    Article  Google Scholar 

  • Vasconcellos, A., Bandeira, A. G., Moura, F. M. S., Araujo, V. F. P., Bezerragusmao, M. A. B., & Constantino, R. (2010). Termite assemblages in three habitats under different disturbance regimes in the semiarid Caatinga of NE Brazil. Journal of Arid Environments, 74, 298–302.

    Article  Google Scholar 

  • Verma, M., Sharma, S., & Prasad, R. (2009). Biological alternatives for termite control: A review. International Biodeterioration & Biodegradation, 63, 959–972.

    Article  CAS  Google Scholar 

  • Wang, C., Zhou, X., Li, S., Schwinghammer, M., Scharf, M., Buczkowski, G., & Bennett, G. W. (2009). Survey and identification of termites (Isoptera: Rhinotermitidae) from Indiana. Annals of the Entomological Society of America, 102, 1029–1036.

    Article  CAS  Google Scholar 

  • Wesolowska, W., & Haddad, C. R. (2002). A new termitivorous jumping spider from South Africa (Araneae Salticidae). Tropical Zoology, 15, 197–207.

    Article  Google Scholar 

  • Williams, R. M. C. (1965). Termite infestation of pines in British Honduras. Termite research in British Honduras under research scheme R. 1048, Ministry of Overseas Development (pp. 11–31). London: Overseas Research Publication.

    Google Scholar 

  • Wyatt, T. D. (2003). Pheromones and animal behavior: Communication by smell and taste (p. 371). Cambridge: Cambridge University Press.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Aslam Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khan, M.A., Ahmad, W. (2018). Termites: An Overview. In: Khan, M., Ahmad, W. (eds) Termites and Sustainable Management. Sustainability in Plant and Crop Protection. Springer, Cham. https://doi.org/10.1007/978-3-319-72110-1_1

Download citation

Publish with us

Policies and ethics