Skip to main content

Classification of Thyroid Diseases

  • Chapter
  • First Online:

Abstract

The aim of this chapter is the proposal for a new, more analytical approach to the classification of thyroid diseases based on the most up-to-date clinical outcome studies and molecular-biological data. These findings have shown that patients with low-risk thyroid cancer, the most common type being the noninvasive encapsulated follicular variant of papillary thyroid carcinoma (EnFvPTC), are usually at decreased risk of adverse outcome, this pointing to the need for less aggressive treatment in these subjects. The proposed reclassification could crucially differentiate between those patients who can benefit from a surveillance approach and those who should be operated on and, potentially, undergo radioiodine therapy, a development that would beneficially impact the quality of life of many patients worldwide suffering from thyroid cancer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Werner SC. Classification of thyroid disease. Report of the committee on nomenclature. The American Thyroid Association I. J Clin Endocrinol Metab. 1969;29:860–2. https://doi.org/10.1210/jcem-29-6-860.

    Article  CAS  PubMed  Google Scholar 

  2. Monaco F. Classification of thyroid diseases. In: Monaco F, et al., editors. Thyroid diseases: clinical fundamentals and therapy. Boca Raton, FL: CRC; 1993. p. 3–11.

    Google Scholar 

  3. Davies TF, Amino N. A new classification for human autoimmune thyroid disease. Thyroid. 1993;3:331–3.

    Article  CAS  Google Scholar 

  4. Weetman AP. Graves’ disease. N Engl J Med. 2000;343:1236–48.

    Article  CAS  Google Scholar 

  5. Zhang J, Zhao L, Ga Y, et al. A classification of Hashimoto’s thyroiditis based on immunohistochemistry for IgG4 and IgG. Thyroid. 2014;24:364–70. https://doi.org/10.1089/thy.2013.0211.

    Article  CAS  PubMed  Google Scholar 

  6. Kottahachchi D, Topliss DJ. Immunoglobulin G4-related thyroid diseases. Eur Thyroid J. 2016;5:231–9. https://doi.org/10.1159/000452623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mandac JC, Chaudhry S, Sherman KE, Tomer Y. The clinical and physiological spectrum of interferon-alpha induced thyroiditis: toward a new classification. Hepatology. 2006;43:661–72.

    Article  CAS  Google Scholar 

  8. Mammen JS, Ghazarian SR, Rosen A, Ladenson PW. Patterns of interferon-alpha-induced thyroid dysfunction vary with ethnicity, sex, smoking status, and pretreatment thyrotropin in an international cohort of patients treated for hepatitis C. Thyroid. 2013;23:1151–8. https://doi.org/10.1089/thy.2012.0565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mammen JS, Ghazarian SR, Pulkstenis E, et al. Phenotypes of interferon-α-induced thyroid dysfunction among patients treated for hepatitis C are associated with pretreatment serum TSH and female sex. J Clin Endocrinol Metab. 2012;97:3270–6. https://doi.org/10.1210/jc.2012-1026.

    Article  CAS  PubMed  Google Scholar 

  10. Stagnaro-Green A. Approach to the patient with postpartum thyroiditis. J Clin Endocrinol Metab. 2012;97:334–42. https://doi.org/10.1210/jc.2011-2576.

    Article  CAS  PubMed  Google Scholar 

  11. Takeshima K, Inaba H, Ariyasu H, et al. Clinicopathological features of Riedel’s thyroiditis associated with IgG4-related disease in Japan. Endocr J. 2015;62:725–31. https://doi.org/10.1507/endocrj.EJ15-0175.

    Article  CAS  PubMed  Google Scholar 

  12. Hennessey JV. Clinical review: Riedel’s thyroiditis: a clinical review. J Clin Endocrinol Metab. 2011;96:3031–41. https://doi.org/10.1210/jc.2011-0617.

    Article  CAS  PubMed  Google Scholar 

  13. Haugen BR, Nawaz S, Cohn A, et al. Secondary malignancy of the thyroid gland: a case report with review of the literature. Thyroid. 1994;4:297–300.

    Article  CAS  Google Scholar 

  14. RA DL, Lloyd RV, Heitz PU, et al., editors. World Health Organization classification of tumours. Pathology and genetics of tumours of endocrine organs. Lyon: IARC Press; 2004.

    Google Scholar 

  15. Shaw JH, Holden A, Sage M. Thyroid lymphoma. Br J Surg. 1989;76:895–7.

    Article  CAS  Google Scholar 

  16. Tseleni S, Arvanitis D, Kakaviatos N, et al. Primary myxoid chondrosarcoma of the thyroid gland. Arch Pathol Lab Med. 1988;112:94–6.

    Google Scholar 

  17. Ito Y, Miyauchi A. Prognostic factors and therapeutic strategies for differentiated carcinoma of the thyroid. Endocr J. 2009;56:177–19.2.

    Article  Google Scholar 

  18. Burgess JR, Tucker P. Incidence trends for papillary thyroid carcinoma and their correlation with thyroid surgery and thyroid fine-needle cytology. Thyroid. 2006;16:47–53.

    Article  Google Scholar 

  19. Albores-Saavedra J, Henson DE, Glazer E, Schwartz AM. Changing patterns in the incidence and survival of thyroid cancer with follicular phenotype-papillary, follicular and anaplastic: a morphological and epidemiological study. Endocr Pathol. 2007;18:1–7.

    Article  Google Scholar 

  20. Tallini G, Tuttle RM, Ghossein RA. The history of the follicular variant of papillary thyroid carcinoma. J Clin Endocrinol Metab. 2017;102(1):15–22.

    PubMed  Google Scholar 

  21. Mete O, Asa SL. Pathological definition and clinical significance of vascular invasion in thyroid carcinomas of follicular epithelial derivation. Med Pathol. 2011;24:1545–52.

    Article  Google Scholar 

  22. Williams ED. Guest editorial: two proposals regarding the terminology of thyroid tumors. Int J Surg Pathol. 2000;8:181–3.

    Article  Google Scholar 

  23. Sakamoto A, Kasai A, Sugano H. Poorly differentiated carcinoma of thyroid. A clinicopathologic entity for a high risk group of papillary and follicular carcinomas. Cancer. 1983;52:1849–55.

    Article  CAS  Google Scholar 

  24. Carcangiu ML, Zampi G, Rosai J. Poorly differentiated (“insular”) thyroid carcinoma. A reinterpretation of Langhans’ “wuchernde Struma”. Am J Surg Pathol. 1984;8:655–68.

    Article  CAS  Google Scholar 

  25. Volante M, Collini P, Nikiforov YE, et al. Poorly differentiated thyroid carcinoma; the Turin proposal for the use of uniform diagnostic criteria and an algorithmic diagnostic approach. Am J Surg Pathol. 2007;31:1256–64.

    Article  Google Scholar 

  26. Volante M, Bussolati G, Papotti M. The story of poorly differentiated thyroid carcinoma: from Langhans’ description to the Turin proposal via Juan Rosai. Semin Diagn Pathol. 2016;33:277–83.

    Article  Google Scholar 

  27. Baloch Z, Livolsi VA, Tondon R. Aggressive variants of follicular cell derived thyroid carcinoma; the so called “real thyroid carcinomas”. J Cin Pathol. 2013;66:733–43.

    Article  Google Scholar 

  28. Kakudo K, Tang W, Ito Y, et al. Papillary carcinoma of the thyroid in Japan: subclassification of common type and identification of low risk group. J Clin Pathol. 2004;57:1041–6.

    Article  CAS  Google Scholar 

  29. Bai Y, Kakudo K, Li Y, et al. Subclassification of non-solid type papillary thyroid carcinoma identification of high-risk group in common type. Cancer Sci. 2008;99:1908–15.

    CAS  PubMed  Google Scholar 

  30. Ito Y, Hirokawa M, Uruno T, et al. Prevalence and biologic behavior of variants of papillary thyroid carcinoma: experience at a single institute. Pathology. 2008;40:617–22.

    Article  Google Scholar 

  31. Asioli S, Erickson LA, Sebo TJ, et al. Papillary thyroid carcinoma with prominent hobnail features: a new aggressive variant of moderately differentiated papillary carcinoma. Am J Surg Pathol. 2010;34:44–52.

    Article  Google Scholar 

  32. Kato H, Yamashita K, Enomoto T, et al. Classification and general considerations of thyroid cancer. Ann Clin Pathol. 2015;3:1045–53.

    Google Scholar 

  33. Sak SD. Variants of papillary thyroid carcinoma: multiple faces of a familiar tumor. Turk Patoloji Derg. 2015;31:34–47.

    PubMed  Google Scholar 

  34. Motosugi U, Murata S, Nagata K, et al. Thyroid papillary carcinomas with micropapillary and hobnail growth pattern: a histological variant with intermediate malignancy? Thyroid. 2009;19:535–7.

    Article  Google Scholar 

  35. Lino-Silvia LS, Dominguez-Malagon HR, Caro-Sanchez CH, et al. Thyroid gland papillary Ca with “micropapillary pattern”, a recently recognized poor prognostic finding: clinicopathologic and survival analysis of 7 cases. Hum Pathol. 2012;43:1596–600.

    Article  Google Scholar 

  36. Sugitani I, Toda K, Yamamoto N, et al. Re-evaluation of histopathological factors affecting prognosis of differentiated thyroid carcinoma in a iodide-sufficient country. World J Surg. 2010;34:1265–73.

    Article  Google Scholar 

  37. Shi X, Liu R, Basolo F, et al. Differential clinicopathological risk and prognosis of major papillary thyroid cancer variants. J Clin Endocrinol Metab. 2016;101:264–74.

    Article  CAS  Google Scholar 

  38. Zhu Z, Gandhi M, Nikiforova MN, et al. Molecular profile and clinical- pathologic features of the follicular variant of papillary thyroid carcinoma. An unusually high prevalence of ras mutations. Am J Clin Pathol. 2003;120:71–7.

    Article  CAS  Google Scholar 

  39. Jung CK, Little MP, Lubin JH, et al. The increase in thyroid cancer incidence during the last four decades is accompanied by a high frequency of BRAF mutations and a sharp increase in RAS mutations. J Clin Endocrinol Metab. 2014;99:276–85.

    Article  Google Scholar 

  40. Ciampi R, Nikiforov YE. Alterations of the BRAF gene in thyroid tumors. Endocr Pathol. 2005;16:163–72.

    Article  CAS  Google Scholar 

  41. Nikiforov YE, Seethala RR, Tallini G, et al. Nomenclature revision for encapsulated follicular variant of papillary thyroid carcinoma. JAMA Oncol. 2016;2(8):1023–9.

    Article  Google Scholar 

  42. Ganly I, Wang L, Tuttle RM, et al. Invasion rather than nuclear features correlates with outcome in encapsulated follicular tumors: further evidence for the reclassification of the encapsulated papillary thyroid carcinoma follicular variant. Hum Pathol. 2015;46:657–64.

    Article  Google Scholar 

  43. Akslen LA, LiVolsi VA. Prognostic significance of histological grading compared with subclassification of papillary thyroid carcinoma. Cancer. 2000;88:1902–8.

    Article  CAS  Google Scholar 

  44. Rivera M, Ricarte-Filho J, Patel S, et al. Encapsulated thyroid tumors of follicular cell origin with high grade features (high mitotic rate/tumor necrosis): a clinicopathologic and molecular study. Hum Pathol. 2010;41:172–80.

    Article  CAS  Google Scholar 

  45. Gnemmi V, Renaud F, DoCao CD, et al. Poorly differentiated thyroid carcinomas: application of Turin proposal provides diagnostic results similar to those from assessment of high-grade features. Histopathology. 2014;64:263–73.

    Article  Google Scholar 

  46. Xu B, Ibrahimpasic T, Wang L, Sabra MM, et al. Clinicopathologic features of fatal non-anaplastic follicular cell-derived thyroid carcinomas. Thyroid. 2016;26(11):1588–97.

    Article  CAS  Google Scholar 

  47. Xu B, Wang L, Tuttle RM, Ganly I, Ghossein R. Prognostic impact of extent of vascular invasion in low-grade encapsulated follicular cell-derived thyroid carcinomas: a clinicopathologic study of 276 cases. Hum Pathol. 2015;46:1789–98.

    Article  Google Scholar 

  48. Stojadinovic A, Ghossein RA, Hoos A, et al. Hurthle cell carcinoma: a critical histopathological appraisal. J Clin Oncol. 2001;19:2616–25.

    Article  CAS  Google Scholar 

  49. Ito Y, Hirokawa M, Miyauchi A, et al. Diagnostic and surgical indications of oxyphilic follicular tumors in Japan: surgical specimens and cytology. Endocr J. 2016;63(11):977–82.

    Article  CAS  Google Scholar 

  50. Kakudo K, Bai Y, Katayama S, et al. Classification of thyroid follicular cell tumors of the thyroid gland: analysis involving Japanese patients from one institute. Pathol Int. 2009;59:359–67.

    Article  Google Scholar 

  51. Kakudo K, Bai Y, Liu Z, et al. Classification of thyroid follicular cell tumors: with special reference to borderline lesions. Endocr J. 2011;59:1–12.

    Article  Google Scholar 

  52. Kakudo K, Wakasa T, Ohta Z, et al. Prognostic classification of thyroid follicular cell tumors using Ki 67 labelling index risk stratification of thyroid follicular cell carcinomas. Endocr J. 2015;62:1–12.

    Article  Google Scholar 

  53. Niemeier LA, Kuffner Akatsu H, et al. A combined molecular-pathologic score improves risk stratification of thyroid papillary microcarcinoma. Cancer. 2012;118:2069–77.

    Article  CAS  Google Scholar 

  54. Wojakowska A, Chekan M, Marczak L, et al. Detection of metabolites discriminating subtypes of thyroid cancer: molecular profiling of FFPE samples using the GC/MS approach. Mol Cell Endocrinol. 2015;417:149–57.

    Article  CAS  Google Scholar 

  55. Nikiforov YE, Rowland JM, Bove KE, et al. Distinct pattern of ret oncogene rearrangements in morphological variants of radiation-induced and sporadic thyroid papillary carcinomas in children. Cancer Res. 1997;57:1690–4.

    CAS  PubMed  Google Scholar 

  56. Kimura ET, Nikiforova MN, Zhu Z, et al. High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res. 2003;63:1454–7.

    CAS  PubMed  Google Scholar 

  57. Giordano TJ, Kuick R, Thomas DG, et al. Molecular classification of papillary thyroid carcinoma: distinct BRAF, RAS and RET/PTC mutation-specific gene expression profiles discovered by DNA microarray analysis. Oncogene. 2005;24:6646–56.

    Article  CAS  Google Scholar 

  58. Giordano TJ. Follicular cell thyroid neoplasia: insights from genomics and the cancer genome atlas research network. Curr Opin Oncol. 2016;28:1–4.

    Article  CAS  Google Scholar 

  59. Pratilas CA, Taylor BS, Ye Q, et al. (V600)BRAF is associated with disable feedback inhibition of RAF-MEK signaling and elevated transcriptional output of the pathway. Proc Natl Acad Sci U S A. 2009;106:4519–24.

    Article  CAS  Google Scholar 

  60. Guerra A, Sapio MR, Marotta V, et al. The primary occurrence of BRAF(V600) is a rare clonal event in papillary thyroid carcinoma. J Clin Endocrinol Metab. 2012;97:517–24.

    Article  CAS  Google Scholar 

  61. Liu X, Bishop J, Shan Y, et al. Highly prevalent TERT promoter mutations in aggressive thyroid cancers. Endocr Relat Cancer. 2013b;20:603–10.

    Article  Google Scholar 

  62. Hsiao SJ, Nikiforov YE. Molecular approaches to thyroid cancer diagnosis. Endocr Relat Cancer. 2014;21:301–13.

    Article  Google Scholar 

  63. Pierlorenzo P, Battista S, Pierantoni GM, Fusco A. Deregulation of micro RNA expression in thyroid neoplasias. Nat Rev Endocrinol. 2014;10:88–101.

    Article  Google Scholar 

  64. Ito Y, Yoshida H, Maruo R, et al. BRAF mutation in papillary thyroid carcinoma in a Japanese population: its lack of correlation with high-risk clinicopathological features and disease-free survival of patients. Endocr J. 2009;56:89–97.

    Article  CAS  Google Scholar 

  65. Xing M, Alzahrani AS, Carson KA, Viola D, et al. Association between BRAF V600 mutation and mortality in patients with papillary thyroid cancer. JAMA. 2013;309:1493–501.

    Article  CAS  Google Scholar 

  66. Torregrossa L, Viola D, Sensi E, et al. Papillary thyroid carcinoma with rare exon 15 BRAF mutation has indolent behavior: a single-institution experience. J Clin Endocrinol Metab. 2016;101:4413–20.

    Article  CAS  Google Scholar 

  67. Pratilas CA, Solit DB. Therapeutic strategies for targeting BRAF in human cancer. Rev Recent Clin Trials. 2007;2:121–34.

    Article  CAS  Google Scholar 

  68. Leboeuf R, Baumgartner JE, Benezra M, et al. BRAFV600E mutation is associated with preferential sensitivity to mitogen-activated protein kinase kinase inhibition in thyroid cancer cell lines. J Clin Endocrinol Metab. 2008;93:2194–201.

    Article  CAS  Google Scholar 

  69. Durante C, Puxeddu E, Ferretti E, et al. BRAF mutations in papillary thyroid carcinomas inhibit genes involved in iodine metabolism. J Clin Endocrinol Metab. 2007;92:2840–3.

    Article  CAS  Google Scholar 

  70. Farndon JR, Leight GS, Dilley WG, et al. Familial medullary thyroid carcinoma without associated endocrinopathies: a distinct entity. Br J Surg. 1986;73:278–81.

    Article  CAS  Google Scholar 

  71. Santoro M, Carlomagno F, Romano A, et al. Activation of RET as a dominant transforming gene by germline mutations of MENA and MEN 2B. Science. 1995;267:381–3.

    Article  CAS  Google Scholar 

  72. Eng C, Clayton D, Schuffenecker I, et al. The relationship between specific RET proto-oncogene mutations and disease phenotype in multiple endocrine neoplasia type 2. JAMA. 1996;276:1575–9.

    Article  CAS  Google Scholar 

  73. Machens A, Gimm O, Hinze R, et al. Genotype-phenotype correlations in hereditary medullary thyroid carcinoma: oncological features and biochemical properties. J Clin Endocrinol Metab. 2001;86:1104–9.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonidas H. Duntas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Duntas, L.H., Tseleni-Balafouta, S. (2019). Classification of Thyroid Diseases. In: Luster, M., Duntas, L., Wartofsky, L. (eds) The Thyroid and Its Diseases. Springer, Cham. https://doi.org/10.1007/978-3-319-72102-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72102-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72100-2

  • Online ISBN: 978-3-319-72102-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics