Skip to main content

The Thyroid and Its Regulation by the TSHR: Evolution, Development, and Congenital Defects

  • Chapter
  • First Online:
The Thyroid and Its Diseases
  • 2875 Accesses

Abstract

The most frequent inborn endocrine disorder is congenital hypothyroidism (CH) with a prevalence of 1 in 3000 newborns. In most cases a morphological defect of the thyroid gland occurs, and in these cases of “thyroid dysgenesis,” a defect in the different steps of thyroid organogenesis that resembles the phylogenetic development of the thyroid can be expected. However, so far, in this larger group of patients suffering from thyroid dysgenesis, a defect is only rarely found in transcription factor genes known from thyroid organogenesis and phylogenesis, e.g., in NKX and PAX genes. In addition some patients with defects of thyroid development were found to have a TSH receptor (TSHR) gene mutation. Together only 5% of thyroid dysgenesis can be explained today by genetic defects, suggesting epigenetic or other molecular causes, and only in 10% of patients a normally located thyroid gland is detected. In this smaller group of patients, genetic defects in candidate genes for thyroid hormone synthesis are frequently found. From the 1880s treatment in CH was started, first with thyroid extracts, later after installation of newborn screening programs for CH with LT4. In this chapter we will summarize the actual knowledge about the development of the thyroid gland in terms of their evolutionary origin as well in their ontogenetic maturation and to use this precognition as a basis for an understanding of the pathogenesis of congenital hypothyroidism with a specific emphasis on function and dysfunction of the TSHR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fisher DA. Effectiveness of newborn screening programs for congenital hypothyroidism: prevalence of missed cases. Pediatr Clin N Am. 1987;34:881–90.

    Article  CAS  Google Scholar 

  2. Gruters A, L’allemand D, Beyer P, et al. Screening of newborn infants for hypothyroidism in Berlin (west) 1978–1982. Monatsschr Kinderheilkunde. 1983;131:100–5.

    CAS  Google Scholar 

  3. Klein AH, Meltzer S, Kenny FM. Improved prognosis in congenital hypothyroidism treated before age three months. J Pediatr. 1972;81:912–5.

    Article  CAS  PubMed  Google Scholar 

  4. Klein AH, Agustin AV, Foley TP Jr. Successful laboratory screening for congenital hypothyroidism. Lancet. 1974;2:77–9.

    Article  CAS  PubMed  Google Scholar 

  5. Albert BB, Heather N, Derraik JG, et al. Neurodevelopmental and body composition outcomes in children with congenital hypothyroidism treated with high-dose initial replacement and close monitoring. J Clin Endocrinol Metab. 2013;98:3663–70.

    Article  CAS  PubMed  Google Scholar 

  6. Fu C, Wang J, Luo S, et al. Next-generation sequencing analysis of TSHR in 384 Chinese subclinical congenital hypothyroidism (CH) and CH patients. Clin Chim Acta. 2016;462:127–32.

    Article  CAS  PubMed  Google Scholar 

  7. Abramowicz MJ, Duprez L, Parma J, et al. Familial congenital hypothyroidism due to inactivating mutation of the thyrotropin receptor causing profound hypoplasia of the thyroid gland. J Clin Invest. 1997;99:3018–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Biebermann H, Gruters A, Schoneberg T, et al. Congenital hypothyroidism caused by mutations in the thyrotropin-receptor gene. N Engl J Med. 1997;336:1390–1.

    Article  CAS  PubMed  Google Scholar 

  9. Sunthornthepvarakui T, Gottschalk ME, Hayashi Y, et al. Brief report: resistance to thyrotropin caused by mutations in the thyrotropin-receptor gene. N Engl J Med. 1995;332:155–60.

    Article  Google Scholar 

  10. Macchia PE, Lapi P, Krude H, et al. PAX8 mutations associated with congenital hypothyroidism caused by thyroid dysgenesis. Nat Genet. 1998;19:83–6.

    Article  CAS  PubMed  Google Scholar 

  11. Clifton-Bligh RJ, Wentworth JM, Heinz P, et al. Mutation of the gene encoding human TTF-2 associated with thyroid agenesis, cleft palate and choanal atresia. Nat Genet. 1998;19:399–401.

    Article  CAS  PubMed  Google Scholar 

  12. Devriendt K, Vanhole C, Matthijs G, et al. Deletion of thyroid transcription factor-1 gene in an infant with neonatal thyroid dysfunction and respiratory failure. N Engl J Med. 1998;338:1317–8.

    Article  CAS  PubMed  Google Scholar 

  13. Krude H, Schutz B, Biebermann H, et al. Choreoathetosis, hypothyroidism, and pulmonary alterations due to human NKX2-1 haploinsufficiency. J Clin Invest. 2002;109:475–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gruters A, Krude H. Detection and treatment of congenital hypothyroidism. Nat Rev Endocrinol. 2011;8:104–13.

    Article  PubMed  CAS  Google Scholar 

  15. Van Vliet G, Vassart G. Monozygotic twins are generally discordant for congenital hypothyroidism from thyroid dysgenesis. Horm Res. 2009;72:320.

    Article  PubMed  CAS  Google Scholar 

  16. Kleinau G, Kalveram L, Kohrle J, et al. Minireview: insights into the structural and molecular consequences of the TSH-beta mutation C105Vfs114X. Mol Endocrinol. 2016;30:954–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Miyai K. Congenital thyrotropin deficiency—from discovery to molecular biology, postgenome and preventive medicine. Endocr J. 2007;54:191–203.

    Article  CAS  PubMed  Google Scholar 

  18. Biebermann H, Liesenkotter KP, Emeis M, et al. Severe congenital hypothyroidism due to a homozygous mutation of the betaTSH gene. Pediatr Res. 1999;46:170–3.

    Article  CAS  PubMed  Google Scholar 

  19. Leblanc C, Colin C, Cosse A, et al. Iodine transfers in the coastal marine environment: the key role of brown algae and of their vanadium-dependent haloperoxidases. Biochimie. 2006;88:1773–85.

    Article  CAS  PubMed  Google Scholar 

  20. Verhaeghe EF, Fraysse A, Guerquin-Kern JL, et al. Microchemical imaging of iodine distribution in the brown alga Laminaria digitata suggests a new mechanism for its accumulation. J Biol Inorg Chem. 2008;13:257–69.

    Article  CAS  PubMed  Google Scholar 

  21. Miller AE, Heyland A. Endocrine interactions between plants and animals: implications of exogenous hormone sources for the evolution of hormone signaling. Gen Comp Endocrinol. 2010;166:455–61.

    Article  CAS  PubMed  Google Scholar 

  22. Krude H. Evolution, child development and the thyroid: a phylogenetic and ontogenetic introduction to normal thyroid function. Endocr Dev. 2014;26:1–16.

    Article  CAS  PubMed  Google Scholar 

  23. Freamat M, Sower SA. Integrative neuro-endocrine pathways in the control of reproduction in lamprey: a brief review. Front Endocrinol. 2013;4:151.

    Article  Google Scholar 

  24. Sower SA, Decatur WA, Hausken KN, et al. Emergence of an ancestral glycoprotein hormone in the pituitary of the sea lamprey, a basal vertebrate. Endocrinology. 2015;156:3026–37.

    Article  CAS  PubMed  Google Scholar 

  25. Denver RJ. Neuroendocrinology of amphibian metamorphosis. Curr Top Dev Biol. 2013;103:195–227.

    Article  CAS  PubMed  Google Scholar 

  26. Stein SA, Shanklin DR, Krulich L, et al. Evaluation and characterization of the hyt/hyt hypothyroid mouse. II. Abnormalities of TSH and the thyroid gland. Neuroendocrinology. 1989;49:509–19.

    Article  CAS  PubMed  Google Scholar 

  27. Antonica F, Kasprzyk DF, Opitz R, et al. Generation of functional thyroid from embryonic stem cells. Nature. 2012;491:66–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kurmann AA, Serra M, Hawkins F, et al. Regeneration of thyroid function by transplantation of differentiated pluripotent stem cells. Cell Stem Cell. 2015;17:527–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Trueba SS, Auge J, Mattei G, et al. PAX8, TITF1, and FOXE1 gene expression patterns during human development: new insights into human thyroid development and thyroid dysgenesis-associated malformations. J Clin Endocrinol Metab. 2005;90:455–62.

    Article  CAS  PubMed  Google Scholar 

  30. Szinnai G, Lacroix L, Carre A, et al. Sodium/iodide symporter (NIS) gene expression is the limiting step for the onset of thyroid function in the human fetus. J Clin Endocrinol Metab. 2007;92:70–6.

    Article  CAS  PubMed  Google Scholar 

  31. Thorpe-Beeston JG, Nicolaides KH, Mcgregor AM. Fetal thyroid function. Thyroid. 1992;2:207–17.

    Article  CAS  PubMed  Google Scholar 

  32. Ho SS, Metreweli C. Normal fetal thyroid volume. Ultrasound Obstet Gynecol. 1998;11:118–22.

    Article  CAS  PubMed  Google Scholar 

  33. Fisher DA. Physiological variations in thyroid hormones: physiological and pathophysiological considerations. Clin Chem. 1996;42:135–9.

    CAS  PubMed  Google Scholar 

  34. Osler W. Transactions of the Congress of American Physicians and Surgeons. Fourth triennial session. Washington, DC. 1897;1:169–206.

    Google Scholar 

  35. Abramowicz MJ, Targovnik HM, Varela V, et al. Identification of a mutation in the coding sequence of the human thyroid peroxidase gene causing congenital goiter. J Clin Invest. 1992;90:1200–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ieiri T, Cochaux P, Targovnik HM, et al. A 3′ splice site mutation in the thyroglobulin gene responsible for congenital goiter with hypothyroidism. J Clin Invest. 1991;88:1901–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fujiwara H, Tatsumi K, Miki K, et al. Congenital hypothyroidism caused by a mutation in the Na+/I- symporter. Nat Genet. 1997;16:124–5.

    Article  CAS  PubMed  Google Scholar 

  38. Matsuda A, Kosugi S. A homozygous missense mutation of the sodium/iodide symporter gene causing iodide transport defect. J Clin Endocrinol Metab. 1997;82:3966–71.

    CAS  PubMed  Google Scholar 

  39. Pohlenz J, Medeiros-Neto G, Gross JL, et al. Hypothyroidism in a Brazilian kindred due to iodide trapping defect caused by a homozygous mutation in the sodium/iodide symporter gene. Biochem Biophys Res Commun. 1997;240:488–91.

    Article  CAS  PubMed  Google Scholar 

  40. Everett LA, Glaser B, Beck JC, et al. Pendred syndrome is caused by mutations in a putative sulphate transporter gene (PDS). Nat Genet. 1997;17:411–22.

    Article  CAS  PubMed  Google Scholar 

  41. Moreno JC, Bikker H, Kempers MJ, et al. Inactivating mutations in the gene for thyroid oxidase 2 (THOX2) and congenital hypothyroidism. N Engl J Med. 2002;347:95–102.

    Article  CAS  PubMed  Google Scholar 

  42. Zamproni I, Grasberger H, Cortinovis F, et al. Biallelic inactivation of the dual oxidase maturation factor 2 (DUOXA2) gene as a novel cause of congenital hypothyroidism. J Clin Endocrinol Metab. 2008;93:605–10.

    Article  CAS  PubMed  Google Scholar 

  43. Moreno JC, Klootwijk W, Van Toor H, et al. Mutations in the iodotyrosine deiodinase gene and hypothyroidism. N Engl J Med. 2008;358:1811–8.

    Article  CAS  PubMed  Google Scholar 

  44. Nicholas AK, Serra EG, Cangul H, et al. Comprehensive screening of eight known causative genes in congenital hypothyroidism with gland-in-situ. J Clin Endocrinol Metab. 2016;101:4521–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fan X, Fu C, Shen Y, et al. Next-generation sequencing analysis of twelve known causative genes in congenital hypothyroidism. Clin Chim Acta. 2017;468:76–80.

    Article  CAS  PubMed  Google Scholar 

  46. Leger J, Olivieri A, Donaldson M, et al. European society for paediatric endocrinology consensus guidelines on screening, diagnosis, and management of congenital hypothyroidism. J Clin Endocrinol Metab. 2014;99:363–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Castanet M, Polak M, Bonaiti-Pellie C, et al. Nineteen years of national screening for congenital hypothyroidism: familial cases with thyroid dysgenesis suggest the involvement of genetic factors. J Clin Endocrinol Metab. 2001;86:2009–14.

    Article  CAS  PubMed  Google Scholar 

  48. Deladoey J, Belanger N, Van Vliet G. Random variability in congenital hypothyroidism from thyroid dysgenesis over 16 years in Quebec. J Clin Endocrinol Metab. 2007;92:3158–61.

    Article  CAS  PubMed  Google Scholar 

  49. Perry R, Heinrichs C, Bourdoux P, et al. Discordance of monozygotic twins for thyroid dysgenesis: implications for screening and for molecular pathophysiology. J Clin Endocrinol Metab. 2002;87:4072–7.

    Article  CAS  PubMed  Google Scholar 

  50. Guazzi S, Price M, De Felice M, et al. Thyroid nuclear factor 1 (TTF-1) contains a homeodomain and displays a novel DNA binding specificity. EMBO J. 1990;9:3631–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Thorwarth A, Schnittert-Hubener S, Schrumpf P, et al. Comprehensive genotyping and clinical characterisation reveal 27 novel NKX2-1 mutations and expand the phenotypic spectrum. J Med Genet. 2014;51:375–87.

    Article  CAS  PubMed  Google Scholar 

  52. Mansouri A, Chowdhury K, Gruss P. Follicular cells of the thyroid gland require Pax8 gene function. Nat Genet. 1998;19:87–90.

    Article  CAS  PubMed  Google Scholar 

  53. Al Taji E, Biebermann H, Limanova Z, et al. Screening for mutations in transcription factors in a Czech cohort of 170 patients with congenital and early-onset hypothyroidism: identification of a novel PAX8 mutation in dominantly inherited early-onset non-autoimmune hypothyroidism. Eur J Endocrinol. 2007;156:521–9.

    Article  PubMed  CAS  Google Scholar 

  54. Montanelli L, Tonacchera M. Genetics and phenomics of hypothyroidism and thyroid dys- and agenesis due to PAX8 and TTF1 mutations. Mol Cell Endocrinol. 2010;322:64–71.

    Article  CAS  PubMed  Google Scholar 

  55. Meeus L, Gilbert B, Rydlewski C, et al. Characterization of a novel loss of function mutation of PAX8 in a familial case of congenital hypothyroidism with in-place, normal-sized thyroid. J Clin Endocrinol Metab. 2004;89:4285–91.

    Article  CAS  PubMed  Google Scholar 

  56. Bamforth JS, Hughes IA, Lazarus JH, et al. Congenital hypothyroidism, spiky hair, and cleft palate. J Med Genet. 1989;26:49–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zannini M, Avantaggiato V, Biffali E, et al. TTF-2, a new forkhead protein, shows a temporal expression in the developing thyroid which is consistent with a role in controlling the onset of differentiation. EMBO J. 1997;16:3185–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. De Felice M, Ovitt C, Biffali E, et al. A mouse model for hereditary thyroid dysgenesis and cleft palate. Nat Genet. 1998;19:395–8.

    Article  PubMed  CAS  Google Scholar 

  59. De Felice M, Di Lauro R. Minireview: intrinsic and extrinsic factors in thyroid gland development: an update. Endocrinology. 2011;152:2948–56.

    Article  PubMed  CAS  Google Scholar 

  60. Opitz R, Maquet E, Zoenen M, et al. TSH receptor function is required for normal thyroid differentiation in zebrafish. Mol Endocrinol. 2011;25:1579–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Biebermann H, Schoneberg T, Krude H, et al. Mutations of the human thyrotropin receptor gene causing thyroid hypoplasia and persistent congenital hypothyroidism. J Clin Endocrinol Metab. 1997;82:3471–80.

    CAS  PubMed  Google Scholar 

  62. Gagne N, Parma J, Deal C, et al. Apparent congenital athyreosis contrasting with normal plasma thyroglobulin levels and associated with inactivating mutations in the thyrotropin receptor gene: are athyreosis and ectopic thyroid distinct entities? J Clin Endocrinol Metab. 1998;83:1771–5.

    CAS  PubMed  Google Scholar 

  63. Kreuchwig A, Kleinau G, Krause G. Research resource: novel structural insights bridge gaps in glycoprotein hormone receptor analyses. Mol Endocrinol. 2013;27:1357–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kreuchwig A, Kleinau G, Kreuchwig F, et al. Research resource: update and extension of a glycoprotein hormone receptors web application. Mol Endocrinol. 2011;25:707–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Calebiro D, Gelmini G, Cordella D, et al. Frequent TSH receptor genetic alterations with variable signaling impairment in a large series of children with nonautoimmune isolated hyperthyrotropinemia. J Clin Endocrinol Metab. 2012;97:E156–60.

    Article  CAS  PubMed  Google Scholar 

  66. Persani L, Calebiro D, Cordella D, et al. Genetics and phenomics of hypothyroidism due to TSH resistance. Mol Cell Endocrinol. 2010;322:72–82.

    Article  CAS  PubMed  Google Scholar 

  67. Calebiro D, De Filippis T, Lucchi S, et al. Intracellular entrapment of wild-type TSH receptor by oligomerization with mutants linked to dominant TSH resistance. Hum Mol Genet. 2005;14:2991–3002.

    Article  CAS  PubMed  Google Scholar 

  68. Enkhbayar P, Kamiya M, Osaki M, et al. Structural principles of leucine-rich repeat (LRR) proteins. Proteins. 2004;54:394–403.

    Article  CAS  PubMed  Google Scholar 

  69. Sanders J, Chirgadze DY, Sanders P, et al. Crystal structure of the TSH receptor in complex with a thyroid-stimulating autoantibody. Thyroid. 2007;17:395–410.

    Article  CAS  PubMed  Google Scholar 

  70. Sanders P, Young S, Sanders J, et al. Crystal structure of the TSH receptor (TSHR) bound to a blocking-type TSHR autoantibody. J Mol Endocrinol. 2011;46:81–99.

    CAS  PubMed  Google Scholar 

  71. Kleinau G, Jaschke H, Neumann S, et al. Identification of a novel epitope in the thyroid-stimulating hormone receptor ectodomain acting as intramolecular signaling interface. J Biol Chem. 2004;279:51590–600.

    Article  CAS  PubMed  Google Scholar 

  72. Caltabiano G, Campillo M, De Leener A, et al. The specificity of binding of glycoprotein hormones to their receptors. Cell Mol Life Sci. 2008;65:2484–92.

    Article  CAS  PubMed  Google Scholar 

  73. Kosugi S, Ban T, Akamizu T, et al. Site-directed mutagenesis of a portion of the extracellular domain of the rat thyrotropin receptor important in autoimmune thyroid disease and nonhomologous with gonadotropin receptors. Relationship of functional and immunogenic domains. J Biol Chem. 1991;266:19413–8.

    CAS  PubMed  Google Scholar 

  74. Vassart G, Kleinau G. TSH receptor mutations and diseases. In: De Groot LJ, Chrousos G, Dungan K, Feingold KR, Grossman A, Hershman JM, Koch C, Korbonits M, McLachlan R, New M, Purnell J, Rebar R, Singer F, Vinik A, editors. Endotext. South Dartmouth: MDText.com, Inc; 2000.

    Google Scholar 

  75. Kleinau G, Krause G. Thyrotropin and homologous glycoprotein hormone receptors: structural and functional aspects of extracellular signaling mechanisms. Endocr Rev. 2009;30:133–51.

    Article  CAS  PubMed  Google Scholar 

  76. Allgeier A, Offermanns S, Van Sande J, et al. The human thyrotropin receptor activates G-proteins Gs and Gq/11. J Biol Chem. 1994;269:13733–5.

    CAS  PubMed  Google Scholar 

  77. Laugwitz KL, Allgeier A, Offermanns S, et al. The human thyrotropin receptor: a heptahelical receptor capable of stimulating members of all four G protein families. Proc Natl Acad Sci U S A. 1996;93:116–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Van Sande J, Raspe E, Perret J, et al. Thyrotropin activates both the cyclic AMP and the PIP2 cascades in CHO cells expressing the human cDNA of TSH receptor. Mol Cell Endocrinol. 1990;74:R1–6.

    Article  PubMed  Google Scholar 

  79. Wiersinga WM. Graves’ orbitopathy: management of difficult cases. Ind J Endocrinol Meta. 2012;16:S150–2.

    Google Scholar 

  80. Buch TR, Biebermann H, Kalwa H, et al. G13-dependent activation of MAPK by thyrotropin. J Biol Chem. 2008;283:20330–41.

    Article  PubMed  CAS  Google Scholar 

  81. Krause K, Boisnard A, Ihling C, et al. Comparative proteomic analysis to dissect differences in signal transduction in activating TSH receptor mutations in the thyroid. Int J Biochem Cell Biol. 2012;44:290–301.

    Article  CAS  PubMed  Google Scholar 

  82. Latif R, Morshed SA, Zaidi M, et al. The thyroid-stimulating hormone receptor: impact of thyroid-stimulating hormone and thyroid-stimulating hormone receptor antibodies on multimerization, cleavage, and signaling. Endocrinol Metab Clin N Am. 2009;38:319–41. viii.

    Article  CAS  Google Scholar 

  83. Vassart G, Dumont JE. The thyrotropin receptor and the regulation of thyrocyte function and growth. Endocr Rev. 1992;13:596–611.

    CAS  PubMed  Google Scholar 

  84. Grasberger H, Van Sande J, Hag-Dahood Mahameed A, et al. A familial thyrotropin (TSH) receptor mutation provides in vivo evidence that the inositol phosphates/Ca2+ cascade mediates TSH action on thyroid hormone synthesis. J Clin Endocrinol Metab. 2007;92:2816–20.

    Article  CAS  PubMed  Google Scholar 

  85. Kero J, Ahmed K, Wettschureck N, et al. Thyrocyte-specific Gq/G11 deficiency impairs thyroid function and prevents goiter development. J Clin Invest. 2007;117:2399–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Winkler F, Kleinau G, Tarnow P, et al. A new phenotype of nongoitrous and nonautoimmune hyperthyroidism caused by a heterozygous thyrotropin receptor mutation in transmembrane helix 6. J Clin Endocrinol Metab. 2010;95:3605–10.

    Article  CAS  PubMed  Google Scholar 

  87. Kosugi S, Okajima F, Ban T, et al. Mutation of alanine 623 in the third cytoplasmic loop of the rat thyrotropin (TSH) receptor results in a loss in the phosphoinositide but not cAMP signal induced by TSH and receptor autoantibodies. J Biol Chem. 1992;267:24153–6.

    CAS  PubMed  Google Scholar 

  88. Parma J, Duprez L, Van Sande J, et al. Somatic mutations in the thyrotropin receptor gene cause hyperfunctioning thyroid adenomas. Nature. 1993;365:649–51.

    Article  CAS  PubMed  Google Scholar 

  89. Claus M, Neumann S, Kleinau G, et al. Structural determinants for G-protein activation and specificity in the third intracellular loop of the thyroid-stimulating hormone receptor. J Mol Med. 2006;84:943–54.

    Article  CAS  PubMed  Google Scholar 

  90. Neumann S, Krause G, Claus M, et al. Structural determinants for g protein activation and selectivity in the second intracellular loop of the thyrotropin receptor. Endocrinology. 2005;146:477–85.

    Article  CAS  PubMed  Google Scholar 

  91. Kleinau G, Jaeschke H, Worth CL, et al. Principles and determinants of G-protein coupling by the rhodopsin-like thyrotropin receptor. PLoS One. 2010;5:e9745.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Rasmussen SG, Devree BT, Zou Y, et al. Crystal structure of the beta2 adrenergic receptor-Gs protein complex. Nature. 2011;477:549–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Biebermann H, Winkler F, Handke D, et al. New pathogenic thyrotropin receptor mutations decipher differentiated activity switching at a conserved helix 6 motif of family a GPCR. J Clin Endocrinol Metab. 2012;97:E228–32.

    Article  CAS  PubMed  Google Scholar 

  94. Kleinau G, Kreuchwig A, Worth CL, et al. An interactive web-tool for molecular analyses links naturally occurring mutation data with three-dimensional structures of the rhodopsin-like glycoprotein hormone receptors. Hum Mutat. 2010;31:E1519–25.

    Article  CAS  PubMed  Google Scholar 

  95. Neumann S, Krause G, Chey S, et al. A free carboxylate oxygen in the side chain of position 674 in transmembrane domain 7 is necessary for TSH receptor activation. Mol Endocrinol. 2001;15:1294–305.

    Article  CAS  PubMed  Google Scholar 

  96. Urizar E, Claeysen S, Deupi X, et al. An activation switch in the rhodopsin family of G protein-coupled receptors: the thyrotropin receptor. J Biol Chem. 2005;280:17135–41.

    Article  CAS  PubMed  Google Scholar 

  97. Kleinau G, Brehm M, Wiedemann U, et al. Implications for molecular mechanisms of glycoprotein hormone receptors using a new sequence-structure-function analysis resource. Mol Endocrinol. 2007;21:574–80.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heiko Krude .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Krude, H., Biebermann, H. (2019). The Thyroid and Its Regulation by the TSHR: Evolution, Development, and Congenital Defects. In: Luster, M., Duntas, L., Wartofsky, L. (eds) The Thyroid and Its Diseases. Springer, Cham. https://doi.org/10.1007/978-3-319-72102-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72102-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72100-2

  • Online ISBN: 978-3-319-72102-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics