Contrast Optimal XOR Based Visual Cryptographic Schemes

  • Sabyasachi DuttaEmail author
  • Avishek Adhikari
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10681)


OR-based Visual Cryptographic Schemes (OVCS) suffer from poor visual quality of the reconstructed image. XOR-based visual secret sharing (XVCS) can be thought of as an alternative where the relative contrast of the reconstructed image is much better. Moreover, it is possible to achieve optimum relative contrast equal to 1 in XVCS which is an impossibility in case of OVCS. Although there are examples of XVCSs where optimum relative contrast is achieved but to the best of our knowledge, this is the first theoretical work to find a necessary and sufficient condition for a XOR-based VCS to achieve optimum relative contrast equal to 1 in terms of the underlying access structure.


Cumulative array Relative contrast Equivalent participants Essential participants Maximal forbidden sets Visual secret sharing scheme 



Research of the second author is partially supported by National Board for Higher Mathematics, Department of Atomic Energy, Government of India, Grant No. 2/48(10)/2013/NBHM(R.P.)/R&D II/695.


  1. 1.
    Adhikari, A.: Linear algebraic techniques to construct monochrome visual cryptographic schemes for general access structure and its applications to color images. Des. Codes Crypt. 73(3), 865–895 (2014)CrossRefzbMATHGoogle Scholar
  2. 2.
    Adhikari, A., Bose, M.: A new visual cryptographic scheme using latin squares. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 87(5), 1198–1202 (2004)Google Scholar
  3. 3.
    Adhikari, A., Dutta, T.K., Roy, B.: A new black and white visual cryptographic scheme for general access structures. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT 2004. LNCS, vol. 3348, pp. 399–413. Springer, Heidelberg (2004). CrossRefGoogle Scholar
  4. 4.
    Adhikari, A., Bose, M., Kumar, D., Roy, B.K.: Applications of partially balanced incomplete block designs in developing (2, n) visual cryptographic schemes. IEICE Trans. 90-A(5), 949–951 (2007)Google Scholar
  5. 5.
    Adhikari, A., Roy, B.: On some constructions of monochrome visual cryptographic schemes. In: 1st International Conference on Information Technology, IT 2008, pp. 1–6. IEEE (2008)Google Scholar
  6. 6.
    Arumugam, S., Lakshmanan, R., Nagar, A.K.: On (k, n)*-visual cryptography scheme. Des. Codes Crypt. 71(1), 153–162 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Ateniese, G., Blundo, C., Santis, A.D., Stinson, D.R.: Visual cryptography for general access structures. Inf. Comput. 129, 86–106 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Ateniese, G., Blundo, C., De Santis, A., Stinson, D.R.: Constructions and bounds for visual cryptography. In: Meyer, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 416–428. Springer, Heidelberg (1996). CrossRefGoogle Scholar
  9. 9.
    Blundo, C., D’arco, P., De Santis, A., Stinson, D.R.: Contrast optimal threshold visual cryptography. SIAM J. Discrete Math. 16(2), 224–261 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Droste, S.: New results on visual cryptography. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 401–415. Springer, Heidelberg (1996). Google Scholar
  11. 11.
    Dutta, S., Adhikari, A.: XOR based non-monotone t-\((k,n)^*\)-visual cryptographic schemes using linear algebra. In: Hui, L.C.K., Qing, S.H., Shi, E., Yiu, S.M. (eds.) ICICS 2014. LNCS, vol. 8958, pp. 230–242. Springer, Cham (2015). CrossRefGoogle Scholar
  12. 12.
    Dutta, S., Singh Rohit, R., Adhikari, A.: Constructions and analysis of some efficient \(t\)-\((k, n)^*\)-visual cryptographic schemes using linear algebraic techniques. Des. Codes Crypt. 80(1), 165–196 (2016). SpringerGoogle Scholar
  13. 13.
    Fu, Z., Yu, B.: Optimal pixel expansion of deterministic visual cryptography scheme. Multimedia Tools Appl. 73(3), 1177–1193 (2014)CrossRefGoogle Scholar
  14. 14.
    Guo, T., Liu, F., Wu, C.K., Ren, Y.W., Wang, W.: On \((k, n)\) visual cryptography scheme with \(t\) essential parties. In: Padró, C. (ed.) ICITS 2013. LNCS, vol. 8317, pp. 56–68. Springer, Cham (2014). CrossRefGoogle Scholar
  15. 15.
    Hao, H., Shen, G., Zhengxin, F., Bin, Y., Wang, J.: General construction for XOR-based visual cryptography and its extended capability. Multimedia Tools Appl. 75(21), 13883–13911 (2016)CrossRefGoogle Scholar
  16. 16.
    Kafri, O., Keren, E.: Encryption of pictures and shapes by random grids. Opt. Lett. 12(6), 377–379 (1987)CrossRefGoogle Scholar
  17. 17.
    Lee, S.S., Na, J.C., Sohn, S.W., Park, C., Seo, D.H., Kim, S.J.: Visual cryptography based on an interferometric encryption technique. ETRI J. 24(5), 373–380 (2002)CrossRefGoogle Scholar
  18. 18.
    Liu, F., Wu, C.K., Lin, X.J.: Some extensions on threshold visual cryptography schemes. Comput. J. 53, 107–119 (2010)CrossRefGoogle Scholar
  19. 19.
    Liu, F., Wu, C., Lin, X.: Step construction of visual cryptography schemes. IEEE Trans. Inf. Forensics Secur. 5, 27–38 (2010)CrossRefGoogle Scholar
  20. 20.
    Naor, M., Shamir, A.: Visual cryptography. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 1–12. Springer, Heidelberg (1995). Google Scholar
  21. 21.
    Shyu, S.J., Chen, M.C.: Optimum pixel expansions for threshold visual secret sharing schemes. IEEE Trans. Inf. Forensics Secur. 6(3), pt. 2, 960–969 (2011)Google Scholar
  22. 22.
    Tuyls, P., Hollmann, H.D.L., Lint, H.H., Tolhuizen, L.: A polarisation based visual crypto system and its secret sharing schemes (2002),
  23. 23.
    Tuyls, P., Hollmann, H., Lint, J., Tolhuizen, L.: Xor-based visual cryptography schemes. Des. Codes Crypt. 37, 169–186 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Viet, D.Q., Kurosawa, K.: Almost ideal contrast visual cryptography with reversing. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 353–365. Springer, Heidelberg (2004). CrossRefGoogle Scholar
  25. 25.
    Yang, C.-N., Wang, D.-S.: Property analysis of XOR-based visual cryptography. IEEE Trans. Circ. Syst. Video Technol. 24(2), 189–197 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.R.C. Bose Centre for Cryptology and SecurityIndian Statistical InstituteKolkataIndia
  2. 2.Department of Pure Mathematics, Ballygunge Science CollegeUniversity of CalcuttaKolkataIndia

Personalised recommendations