Skip to main content

Single-Shot Secure Quantum Network Coding for General Multiple Unicast Network with Free Public Communication

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10681))

Abstract

Based on a secure classical network code, we propose a general method for constructing a secure quantum network code in the multiple unicast setting under restricted eavesdropper’s power. This protocol certainly transmits quantum states when there is no attack. We also show the secrecy with shared randomness as additional resource from the secrecy and the recoverability of the corresponding secure classical network code. Our protocol does not require verification process, which ensures single-shot security.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    This theorem is also reviewed in [31, Section 8.15.1].

References

  1. Buhrman, H.R., Cleve, R., Wigderson, A.: Quantum vs. classical communication and computation. In: Proceedings of the 30th Annual ACM Symposium on Theory of Computing, pp. 63–68. ACM, New York (1999)

    Google Scholar 

  2. Raz, R.: Exponential separation of quantum and classical communication complexity. In: Proceedings of the Thirty-First Annual ACM Symposium on Theory of Computing, STOC 1999, pp. 358–367. ACM, New York (1999)

    Google Scholar 

  3. Cai, N., Yeung, R.: Secure network coding. In: Proceedings of 2002 IEEE International Symposium on Information Theory (ISIT), p. 323 (2002)

    Google Scholar 

  4. Cai, N., Yeung, R.W.: Network error correction, Part 2: lower bounds. Commun. Inf. and Syst. 6(1), 37–54 (2006)

    MathSciNet  MATH  Google Scholar 

  5. Bhattad, K., Member, S., Narayanan, K.R.: Weakly secure network coding. In: First Workshop on Network Coding, Theory, and Applications, Riva del Garda (2005)

    Google Scholar 

  6. Liu, R.L.R., Liang, Y.L.Y., Poor, H., Spasojevic, P.: Secure nested codes for type II wiretap channels. In: 2007 IEEE Information Theory Workshop, pp. 337–342 (2007)

    Google Scholar 

  7. Rouayheb, S.Y.E., Soljanin, E.: On wiretap networks II. In: Proceedings of 2007 IEEE International Symposium on Information Theory (ISIT), pp. 551–555 (2007)

    Google Scholar 

  8. Harada, K., Yamamoto, H.: Strongly secure linear network coding. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E91-A(10), 2720–2728 (2008)

    Google Scholar 

  9. Ho, T.H.T., Leong, B.L.B., Koetter, R., Medard, M., Effros, M., Karger, D.: Byzantine modification detection in multicast networks with random network coding. IEEE Trans. Inf. Theory 54(6), 2798–2803 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jaggi, S., Langberg, M., Katti, S., Ho, T., Katabi, D., Medard, M., Effros, M.: Resilient network coding in the presence of byzantine adversaries. IEEE Trans. Inf. Theory 54(6), 2596–2603 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Nutman, L., Langberg, M.: Adversarial models and resilient schemes for network coding. In: Proceedings of 2008 IEEE International Symposium on Information Theory (ISIT), pp. 171–175 (2008)

    Google Scholar 

  12. Yu, Z.Y.Z., Wei, Y.W.Y., Ramkumar, B., Guan, Y.G.Y.: An efficient signature-based scheme for securing network coding against pollution attacks. In: IEEE INFOCOM 2008 - The 27th Conference on Computer Communications (2008)

    Google Scholar 

  13. Cai, N., Chan, T.: Theory of secure network coding. Proc. IEEE 99, 421–437 (2011)

    Article  Google Scholar 

  14. Cai, N., Yeung, R.W.: Secure network coding on a wiretap network. IEEE Trans. Inf. Theory 57(1), 424–435 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Matsumoto, R., Hayashi, M.: Secure multiplex network coding. In: 2011 International Symposium on Networking Coding (2011). https://doi.org/10.1109/ISNETCOD.2011.5979076

  16. Matsumoto, R., Hayashi, M.: Universal secure multiplex network coding with dependent and non-uniform messages. IEEE Trans. Inform. Theory; Arxiv preprint arXiv: 1111.4174 (2011) (Accepted)

  17. Agarwal, G.K., Cardone, M., Fragouli, C.: On (secure) information flow for multiple-unicast sessions: analysis with butterfly network. arXiv: 1606.07561 (2016)

  18. Hayashi, M., Iwama, K., Nishimura, H., Raymond, R., Yamashita, S.: Quantum network coding. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 610–621. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70918-3_52

    Chapter  Google Scholar 

  19. Hayashi, M.: Prior entanglement between senders enables perfect quantum network coding with modification. Phys. Rev. A 76(4), 40301 (2007)

    Article  MathSciNet  Google Scholar 

  20. Kobayashi, H., Le Gall, F., Nishimura, H., Rötteler, M.: General scheme for perfect quantum network coding with free classical communication. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5555, pp. 622–633. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02927-1_52

    Chapter  Google Scholar 

  21. Leung, D., Oppenheim, J., Winter, A.: Quantum network communication; the butterfly and beyond. IEEE Trans. Inf. Theory 56(7), 3478–3490 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kobayashi, H., Le Gall, F., Nishimura, H., Rotteler, M.: Perfect quantum network communication protocol based on classical network coding. In: Proceedings of 2010 IEEE International Symposium on Information Theory (ISIT), pp. 2686–2690 (2010)

    Google Scholar 

  23. Kobayashi, H., Le Gall, F., Nishimura, H., Rotteler, M.: Constructing quantum network coding schemes from classical nonlinear protocols. In: Proceedings of 2011 IEEE International Symposium on Information Theory (ISIT), pp. 109–113 (2011)

    Google Scholar 

  24. Chiribella, G., D’Ariano, G.M., Perinotti, P.: Quantum circuit architecture. Phys. Rev. Lett. 101, 060401 (2008)

    Article  Google Scholar 

  25. Chiribella, G., D’Ariano, G.M., Perinotti, P.: Theoretical framework for quantum networks. Phys. Rev. A 80, 022339 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gottesman, D., Chuang, I.L.: Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 402, 390–393 (1999)

    Article  Google Scholar 

  27. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  28. Cheng, F., Tan, V.Y.F.: A numerical study on the wiretap network with a simple network topology. IEEE Trans. Inf. Theory 62(5), 2481–2492 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ahlswede, R., Cai, N., Li, S.-Y.R., Yeung, R.W.: Network information flow. IEEE Trans. Inf. Theory 46(4), 1204–1216 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  30. Renes, J.M.: Duality of privacy amplification against quantum adversaries and data compression with quantum side information. Proc. Roy. Soc. A 467(2130), 1604–1623 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hayashi, M.: Quantum Information Theory: Mathematical Foundation, Graduate Texts in Physics. Springer, Heidelberg (2017). Second Edition of Quantum Information, An Introduction. Springer (2017)

    Google Scholar 

  32. Hayashi, M.: Group Representation for Quantum Theory. Springer, Cham (2017)

    Book  MATH  Google Scholar 

  33. Hayashi, M., Owari, M., Kato, G., Cai, N.: arXiv: 1703.00723 (2017). 2017 IEEE International Symposium on Information Theory (ISIT), Aachen, Germany, 25–30 June (2017, Accepted)

  34. Owari, M., Kato, G., Hayashi, M.: Single-shot secure quantum network coding on butterfly network with free public communication. Quantum Sci. Technol. Retrieved from arXiv:1705.01474 (2017, in Press)

Download references

Acknowledgments

The authors are very grateful to Professor Ning Cai and Professor Vincent Y. F. Tan for helpful discussions and comments. The works reported here were supported in part by the JSPS Grant-in-Aid for Scientific Research (A) No. 23246071, (C) No. 16K00014, (B) No. 16KT0017, (C) No. 17K05591, the Okawa Research Grant, and Kayamori Foundation of Informational Science Advancement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Go Kato .

Editor information

Editors and Affiliations

Appendices

Appendix

A  Security Proof Based on Computation Basis Security

To show the security theorem, we prepare an important result for the recovery of the maximally entangled state from evaluation of classical information. First, we consider a sufficient condition to approximately and locally generate the maximally entangled state \(|\varPhi \rangle :=\sum _{x=1}^d \frac{1}{\sqrt{d}} |x\rangle _A\otimes |x\rangle _{A'} \in {\mathcal {H}}_{A}\otimes {\mathcal {H}}_{A'}\) on the composite system \({\mathcal {H}}_A \otimes {\mathcal {H}}_{A'}\), where \(\{|x\rangle _A\}\) and \(\{|x\rangle _{A'}\}\) are the CONSs of \({\mathcal {H}}_{A}\) and \({\mathcal {H}}_{A'}\), respectively. For this purpose, we focus on the following two conditions for a pure state \(\rho \) on the composite system \({\mathcal {H}}_A \otimes {\mathcal {H}}_B\otimes {\mathcal {H}}_R\).

  • \(\epsilon _1\)-classical secrecy:   Let \(\mathop {\text {id}}\nolimits _R\) be the identity operation, \(\rho _{\mathrm{mix},A} \) be the completely mixed state, \(\kappa _{A}\) be the pinching with respect to the computation basis of \({\mathcal {H}}_A\), i.e., \(\kappa _{A}(\sigma ):=\sum _{x=1}^d | x \rangle _A ~_A\langle x|\sigma | x \rangle _A ~_A \langle x|\). The relation \(F(\kappa _{A}\otimes \mathop {\text {id}}\nolimits _R(\rho _{AR}),\rho _{\mathrm{mix},A} \otimes \rho _R ) \ge 1- \epsilon _1\) holds.

  • \(\epsilon _2\)-error classical recoverability:  There exists a POVM \({\varvec{M}}=\{M_x\}_{x=1}^d\) on \({\mathcal {H}}_B\) such that \(\sum _{x=1}^d \mathop {\text {Tr}}\nolimits \rho _{AB} |x \rangle _A ~_A \langle x|\otimes M_x \ge 1- \epsilon _2\).

The following proposition is known.

Proposition 1

(Renes[30]Footnote 1 ). Assume that a state \(\rho =|\varPsi \rangle \langle \varPsi |\) on the composite system \({\mathcal {H}}_A \otimes {\mathcal {H}}_B\otimes {\mathcal {H}}_R\) satisfies both of the above conditions. Then, there is a TP-CP map \(\kappa : {\mathcal {S}}({\mathcal {H}}_B) \rightarrow {\mathcal {S}}({\mathcal {H}}_{A'})\) such that

$$\begin{aligned} F(\mathop {\text {id}}\nolimits _A \otimes \kappa (\rho _{AB}),|\varPhi \rangle \langle \varPhi |) \ge 1- (\sqrt{\epsilon _2}+ \sqrt{\epsilon _1})^2. \end{aligned}$$
(18)

Proposition 1 guarantees that we can generate the maximally entangled state between systems \({\mathcal {H}}_A\) and \({\mathcal {H}}_B\) only by an operation on the system \({\mathcal {H}}_B\) if the bit information on the system \({\mathcal {H}}_A\) is a uniform random number almost independent of the environment system \({\mathcal {H}}_E\) and can be recovered in the system \({\mathcal {H}}_B\). In our situation, these two conditions can be checked by the secrecy and the recoverability.

Proof of Theorem

2:

Part 1: To show the theorem, we prove that an entangled state can be shared by sending entanglement halves from sink nodes by applying Proposition 1 to the state after Step 3-1. We prepare notations, while we employ the same notation as in the proof of Theorem 1. We introduce the quantum systems \({\mathcal {H}}_{n+1}, \ldots , {\mathcal {H}}_{n+l}\) to describe the shared-randomness edges \(\mathbf {e}(n+1), \ldots \mathbf {e}(n+l)\). Given a shared-randomness vertex \(r_k\), by using the notation \(|b\rangle _{r_k}:= |b,\ldots ,b\rangle _{ n+\sum _{j=1}^{k-1}l_{j}+1,\cdots , n+\sum _{j=1}^{k}l_{j}}\), the initial state on the composite system \({\mathcal {H}}_{n+\sum _{j=1}^{k-1}l_{j}+1} \otimes \cdots \otimes {\mathcal {H}}_{n+\sum _{j=1}^{k}l_{j}}\) connected to the shared-randomness vertex \(r_{k}\). can be regarded as the super position state \(|\varPhi \rangle _{r_k}:= \frac{1}{\sqrt{q}}\sum _{x \in \mathbb {F}_q} |b\rangle _{r_k}\). Hence, we denote the system span by \(|{\varvec{b}}\rangle _{SR}:= |b_1\rangle _{r_1}\cdots |b_{n'}\rangle _{r_{n'}}\) by \({\mathcal {H}}_{SR}\).

In this protocol, it is important to consider the path, in which the sequence of the messages is \({\varvec{a}}\in \mathbb {F}_q^{n}\), the sequence of the shared random numbers is \({\varvec{b}}\in \mathbb {F}_q^{n'}\), the sequence of Eve’s injections is \({\varvec{c}}\in \mathbb {F}_q^{h}\), the sequence of inputs of attacked edges is \( {\varvec{z}}\in \mathbb {F}_q^{h}\), and the sequence of outputs of all edges \(\tilde{E}\cup E_O\) is \({\varvec{y}}=(y_{n+l+1}, \ldots , y_{2n+l+N})\). Here, when e(j) is attacked, \(y_{j}\) expresses the information after the attack.

Depending on this path, the matrix component on Eve’s memory \({\mathcal {W}}\) is determined. For \(({\varvec{a}},{\varvec{b}},{\varvec{c}}) \in \mathbb {F}_q^{n+n'+h}\) and \({\varvec{y}}\in \mathbb {F}_q^{N+n}\), the matrix component \(V({\varvec{a}},{\varvec{b}},{\varvec{c}},{\varvec{y}})\) is given as

$$\begin{aligned} V({\varvec{a}},{\varvec{b}},{\varvec{c}},{\varvec{y}}):= \Big (\prod _{j=n+l+1}^{2n+l+N} \delta (y_j , (M' ({\varvec{a}},{\varvec{b}},{\varvec{c}})^T)_j) \Big ) \Big (\prod _{i=1}^{h} \langle c_i |V_i|(M_\zeta ({\varvec{a}},{\varvec{b}},{\varvec{c}})^T)_{i}\rangle \Big ). \end{aligned}$$

Since the information \({\varvec{c}}\in \mathbb {F}_q^{h}\) does not appear in the final state, we define the vector;

$$\begin{aligned} |\varPhi [{\varvec{a}},{\varvec{b}},{\varvec{y}}] \rangle := \sum _{{\varvec{c}}} V({\varvec{a}},{\varvec{b}},{\varvec{c}},{\varvec{y}}) |\phi _{ini}\rangle _W |{\varvec{a}}\rangle _I |{\varvec{b}}\rangle _{SR}|{\varvec{a}},{\varvec{y}}\rangle _{G}, \end{aligned}$$
(19)

Therefore, the state after Step 2 on the whole system is given as

$$\begin{aligned} q^{-(n+n')/2 } \sum _{{\varvec{a}},{\varvec{b}},{\varvec{y}}} |\varPhi [{\varvec{a}},{\varvec{b}},{\varvec{y}}] \rangle _{I,SR,G,W}. \end{aligned}$$
(20)

Now, for a sequence \({\varvec{y}}\in \mathbb {F}_q^{N+n}\), we introduce the sequence \({\varvec{y}}^c:=(y_j)_{j \in E_O\cup \tilde{E} \setminus E_P} \in \mathbb {F}_q^{N+n-h'}\), which expresses the information on the non-protected edges \(E_O\cup \tilde{E} \setminus E_P\). When we observe the measurement outcome \({\varvec{\beta }}=(\beta _j)_{j\in E \setminus E_P}\in \mathbb {F}_q^{N+n-h'}\) in Step 3-1, the resultant state is

$$\begin{aligned} |\varPsi _{{\varvec{\beta }}}\rangle := \sum _{{\varvec{a}},{\varvec{b}},{\varvec{y}}} \omega ^{-\mathop {\text {tr}}\nolimits {\varvec{\beta }}\cdot ({\varvec{a}},{\varvec{y}}^c )} q^{( N+n-h' -n-n')/2 } ~_{NP}\langle {\varvec{a}}, {\varvec{y}}^c |\varPhi [{\varvec{a}},{\varvec{b}},{\varvec{y}}] \rangle _{I,SR,G,W}, \end{aligned}$$
(21)

where \({\mathcal {H}}_{NP}:= (\otimes _{j=1}^{n}{\mathcal {H}}_j) \otimes (\otimes _{j \in E_O\cup \tilde{E} \setminus E_P} {\mathcal {H}}_j)\).

Now we set \({\mathcal {H}}_A:={\mathcal {H}}_{I}\), \({\mathcal {H}}_B:={\mathcal {H}}_{P}\otimes {\mathcal {H}}_{SR}\otimes \mathcal {V}'\), and \({\mathcal {H}}_R:=\mathcal {W}\otimes \mathcal {V}\), where \({\mathcal {H}}_P:=\otimes _{j:\mathbf {e}\left( \iota \left( j\right) \right) \in E_{P} }{\mathcal {H}}_{\iota \left( j\right) }\). and \(\mathcal {V}'\) expresses the Hilbert space of the measurement outcome possessed by the system \({\mathcal {H}}_B\). Then, the final state is pure on the composite system \({\mathcal {H}}_A \otimes {\mathcal {H}}_B\otimes {\mathcal {H}}_R\). Then, due to Proposition 1, it is enough to show the 0-bit secrecy and the 0-bit recoverability separately for the state \(|\varPsi _{{\varvec{\beta }}}\rangle \) with any measurement outcome \({\varvec{\beta }}\).

Part 2: Next, we discuss the 0-classical secrecy. Since \({\mathcal {H}}_B\) does not belong to Eve’s system, it is sufficient to prove the secrecy when we apply the Fourier basis measurement for shared-randomness edges and protected edges and send the measurement outcome \({\varvec{\alpha }}\) to Eve. That is, it is sufficient to show that the unnormalized state \(\sum _{ {\varvec{b}}, {\varvec{y}}_\iota } ~_{SR}\langle {\varvec{b}}| ~_{P}\langle {\varvec{y}}_\iota | \omega ^{-\mathop {\text {tr}}\nolimits {\varvec{\alpha }}\cdot ({\varvec{b}},{\varvec{y}}_\iota )} q^{n/2 }~_I\langle {\varvec{a}}|\varPsi _{{\varvec{\beta }}}\rangle \) does not depend on \({\varvec{a}}\) for each \(({\varvec{\alpha }},{\varvec{\beta }}) \in \mathbb {F}_q^{N+2n+n'}\). Based on Lemma 2, we choose \({\varvec{b}}({\varvec{a}})\in \mathbb {F}_q^{n'}\) for \({\varvec{a}}\in \mathbb {F}_q^{n}\). Since the vector \({\varvec{y}}({\varvec{a}}):=M'(-{\varvec{a}},{\varvec{b}}({\varvec{a}}),0)^T\) satisfies \(M'({\varvec{a}},{\varvec{b}},{\varvec{c}})^T+ {\varvec{y}}({\varvec{a}})= M'(0,{\varvec{b}}+{\varvec{b}}({\varvec{a}}),{\varvec{c}})^T\) and \(M_\varsigma ({\varvec{a}},{\varvec{b}},{\varvec{c}})=M_\varsigma (0,{\varvec{b}}+{\varvec{b}}({\varvec{a}}),{\varvec{c}})\), we have \( V({\varvec{a}},{\varvec{b}},{\varvec{c}},{\varvec{y}}) = V(0,{\varvec{b}}+{\varvec{b}}({\varvec{a}}),{\varvec{c}},{\varvec{y}}+ {\varvec{y}}({\varvec{a}})). \) Hence, we have

$$\begin{aligned}&q^{-( N-h' -n')/2 } \sum _{ {\varvec{b}}, {\varvec{y}}_\iota } ~_{SR}\langle {\varvec{b}}| ~_{P}\langle {\varvec{y}}_\iota | \omega ^{-\mathop {\text {tr}}\nolimits {\varvec{\alpha }}\cdot ({\varvec{b}},{\varvec{y}}_\iota )} q^{n/2 }~_I\langle {\varvec{a}}|\varPsi _{{\varvec{\beta }}}\rangle \\ =&\sum _{{\varvec{b}},{\varvec{y}}} \omega ^{-\mathop {\text {tr}}\nolimits ({\varvec{\alpha }}, {\varvec{\beta }}) \cdot ({\varvec{a}},{\varvec{b}},{\varvec{y}})} ~_{SR}\langle {\varvec{b}}|~_I\langle {\varvec{a}}|~_{G}\langle {\varvec{a}}, {\varvec{y}}|\varPhi [{\varvec{a}},{\varvec{b}},{\varvec{y}}] \rangle _{I,SR,G,W} \\ =&\sum _{{\varvec{b}},{\varvec{y}}} \omega ^{-\mathop {\text {tr}}\nolimits ({\varvec{\alpha }}, {\varvec{\beta }}) \cdot ({\varvec{a}},{\varvec{b}},{\varvec{y}})} \sum _{{\varvec{c}}} V({\varvec{a}},{\varvec{b}},{\varvec{c}},{\varvec{y}}) |\phi _{ini}\rangle _W \\ =&\omega ^{\mathop {\text {tr}}\nolimits ({\varvec{\alpha }}, {\varvec{\beta }}) \cdot ({\varvec{a}},{\varvec{b}}({\varvec{a}}),{\varvec{y}}({\varvec{a}}) )} \sum _{{\varvec{b}},{\varvec{y}}} \omega ^{-\mathop {\text {tr}}\nolimits ({\varvec{\alpha }}, {\varvec{\beta }}) \cdot (0,{\varvec{b}}+{\varvec{b}}({\varvec{a}}),{\varvec{y}}+{\varvec{y}}({\varvec{a}}))} \\&\sum _{{\varvec{c}}} V(0,{\varvec{b}}+{\varvec{b}}({\varvec{a}}),{\varvec{c}},{\varvec{y}}+ {\varvec{y}}({\varvec{a}})) |\phi _{ini}\rangle _W \\ =&\omega ^{\mathop {\text {tr}}\nolimits ({\varvec{\alpha }}, {\varvec{\beta }}) \cdot ({\varvec{a}},{\varvec{b}}({\varvec{a}}),{\varvec{y}}({\varvec{a}}) )} \sum _{{\varvec{b}}',{\varvec{y}}'} \omega ^{-\mathop {\text {tr}}\nolimits ({\varvec{\alpha }}, {\varvec{\beta }}) \cdot (0,{\varvec{b}}',{\varvec{y}}' )} \sum _{{\varvec{c}}} V(0,{\varvec{b}}',{\varvec{c}},{\varvec{y}}') |\phi _{ini}\rangle _W , \end{aligned}$$

where \({\varvec{b}}':= {\varvec{b}}+{\varvec{b}}({\varvec{a}})\) and \({\varvec{y}}':={\varvec{y}}+ {\varvec{y}}({\varvec{a}})\). Since \(\omega ^{\mathop {\text {tr}}\nolimits ({\varvec{\alpha }}, {\varvec{\beta }}) \cdot ({\varvec{a}},{\varvec{b}}({\varvec{a}}),{\varvec{y}}({\varvec{a}}) )} \) is the global phase factor, Eve’s information on \({\mathcal {W}}\otimes \mathcal {V}\) is independent of \({\varvec{a}}\). Thus, we obtain the 0-classical security.

Part 3: To show the 0-error classical recoverability, we give a POVM \(\{M_{{\varvec{a}}'}\}_{{\varvec{a}}' \in \mathbb {F}_q^n}\) on \({\mathcal {H}}_P\) to recover Alice’s message \({\varvec{a}}\), which does not use the outcome \({\varvec{\beta }}\) of the Fourier basis measurement on \(E\setminus E_P\). The condition is given as

$$\begin{aligned} \mathop {\text {Tr}}\nolimits (M_{{\varvec{a}}'} \otimes |{\varvec{a}}\rangle _I ~_I \langle {\varvec{a}}| \otimes I_{R} ) |\varPsi _{{\varvec{\beta }}}\rangle \langle \varPsi _{{\varvec{\beta }}}| = \frac{\delta ({\varvec{a}},{\varvec{a}}')}{q^{n}} . \end{aligned}$$
(22)

Now, using the function \(f_{{\varvec{b}}}\) given in Definition 2, we define the POVM \( M_{{\varvec{a}}'}:= \sum _{ {\varvec{b}}\in \mathbb {F}_q^{n'},{\varvec{y}}_\iota \in \mathbb {F}_q^{h'}: f_{{\varvec{b}}}({\varvec{y}}_\iota )={\varvec{a}}'} |{\varvec{b}}\rangle _{SR}~_{SR}\langle {\varvec{b}}| \otimes | {\varvec{y}}_\iota \rangle _P ~_P \langle {\varvec{y}}_\iota |\). When we make the measurement \(\{|{\varvec{b}}\rangle _{SR}~_{SR}\langle {\varvec{b}}| \otimes | {\varvec{y}}_\iota \rangle _P ~_P \langle {\varvec{y}}_\iota | \otimes |{\varvec{a}}\rangle _I ~_I \langle {\varvec{a}}| \otimes I_{R} \}_{{\varvec{b}}, {\varvec{y}}_\iota , {\varvec{a}}}\), for observed outcomes \( {\varvec{y}}_\iota , {\varvec{a}},{\varvec{b}}\), there exists a sequence \({\varvec{c}}\) such that \({\varvec{y}}_\iota = M_{\iota }'({\varvec{a}},{\varvec{b}},{\varvec{c}}) \). Since the relation (16) guarantees the relation \( f_{{\varvec{b}}}({\varvec{y}}_\iota )={\varvec{a}}\), we obtain the desired condition (22). \(\blacksquare \)

In summary, the above proof shows Theorem 2 via the 0-classical secrecy and the 0-error classical recoverability.

Remark 1

Here, we remark on the relation between our security proof and our protocol. Using Proposition 1, the security proof gives a protocol to transmit a quantum state to \({\mathcal {H}}_B\). Hence, one might consider that this protocol can be used for our purpose. However, this protocol cannot be used for three reasons. (i) Whereas our real setting is multiple-unicast, the protocol in the security proof assumes one receiver. (ii) The protocol in the security proof requires a measuring operation on the shared-randomness as a coherent superposition state across the sharing edges. In the real situation, each receiver possesses only a part of edges. (iii) To realize the protocol given in the security proof, we need to identify the edges attacked by Eve. However, the legitimate users know only the range of Eve’s possible attack. Hence, they cannot perform the decoding protocol. Due to three problems, we cannot apply the protocol given in the security proof in our multiple unicast setting.

Remark 2

One might consider that it is sufficient to apply Proposition 1 to the case when \({\mathcal {H}}_A:={\mathcal {H}}_{I}\), \({\mathcal {H}}_B:={\mathcal {H}}_{P}\otimes {\mathcal {H}}_{SR}\), and \({\mathcal {H}}_R:=\mathcal {W}\) for the respective measurement outcome \({\varvec{\beta }}\). However, this application only shows that the whole density on \(\mathcal {H}_{I}\otimes \mathcal {W}\otimes \mathcal {V}\) is written as

$$\begin{aligned} \sum _{{\varvec{\beta }}}p_{{\varvec{\beta }}} \rho _{I,{\varvec{\beta }}}\otimes \rho _{E,{\varvec{\beta }}} \otimes |{\varvec{\beta }}\rangle \langle {\varvec{\beta }}|. \end{aligned}$$
(23)

Hence, we need to apply Proposition 1 to the case when \({\mathcal {H}}_A:={\mathcal {H}}_{I}\), \({\mathcal {H}}_B:={\mathcal {H}}_{P}\otimes {\mathcal {H}}_{SR}\otimes \mathcal {V}'\), and \({\mathcal {H}}_R:=\mathcal {W}\otimes \mathcal {V}\).

Indeed, one might consider that the combination of form (23) and Part 3 of our proof shows the desired statement because Part 3 of our proof shows the independence of Eve’s state from \(\mathcal {H}_{I}\) when \(\mathcal {H}_{I}\) is measured in a computational basis. This fact only shows that the state \(\langle {\varvec{a}}| \rho _{I,{\varvec{\beta }}}|{\varvec{a}}\rangle \rho _{E,{\varvec{\beta }}} \) is independent of \({\varvec{a}}\). That is, the form (23) and Part 3 of our proof do not deny the possibility of the correlation between the resultant state on Eve’s system and \(\mathcal {H}_{I}\) when the state on \(\mathcal {H}_{I}\) is measured in another basis.

B  Constructions of Matrices Describing Network

In this appendix, we concretely construct the matrices describing the network structure.

1.1 B.1  Construction of \(M_0\)

The definition of input edges and shared-randomness edges determine the coefficients \(\left\{ m_0\left( i,k\right) \right\} _{i,k}\) for \(1\le i\le n+l\) as follows: For \(1\le i\le n\), \(\mathbf {e}\left( i\right) \) is an input edge, that is, \(\mathbf {e}\left( i\right) \in E_{I}\). Thus, the definition of input edges determines \(\left\{ m_0\left( i,k\right) \right\} _{k=1}^{n+n'}\) as

$$\begin{aligned} \left\{ m_0\left( i,k\right) \right\} _{k=1}^{n+n'}=(\overbrace{0,\cdots ,0}^{i-1},1,\overbrace{0,\cdots ,0}^{n'+n-i})\quad \text{ for } 1\le i\le n. \end{aligned}$$
(24)

For \(n+1\le i\le n+l\), \(\mathbf {e}\left( i\right) \) is a shared-randomness edge, that is, \(\mathbf {e}\left( i\right) \in E_{R}\). Hence, there uniquely exists an integer \(i' \in [1,m]\) such that \(n+\sum _{j=1}^{i'-1}l_{j}+1\le i\le n+\sum _{j=1}^{i'}l_{j}\). Thus, the definition of shared-randomness edges determines \(\left\{ m_0\left( i,k\right) \right\} _{k=1}^{n+n'}\) as

$$\begin{aligned} \left\{ m_0\left( i,k\right) \right\} _{k=1}^{n+n'}&=(\overbrace{0,\cdots ,0}^{n+i'-1},1,\overbrace{0,\cdots ,0}^{m-i'}). \end{aligned}$$
(25)

Using Eqs. (4) and (5), we derive the recurrence relation of \(m_0\left( i,k\right) \) as

$$\begin{aligned} m_0\left( i,k\right) =\sum _{j=1}^{i-1}\theta _{ij}m_0\left( j,k\right) . \end{aligned}$$
(26)

Thus, the coefficients \(\left\{ \theta _{ij}\right\} _{i\in \left\{ 1,\dots ,\left| E\right| \right\} ,j<i}\) completely determine all the coefficients \(\left\{ m_0\left( i,k\right) \right\} _{i,k}\) through Eqs. (24), (25), and (26).

1.2 B.2  Construction of M

Since

$$ Y_i =\sum _{j\in \mathop {\mathbf {I}}\nolimits \left( i\right) }\theta _{ij} Y_j', $$

Eqs. (10) and (7) lead

$$\begin{aligned} m\left( i,k\right) =\sum _{j\in \mathop {\mathbf {I}}\nolimits \left( i\right) }\theta _{ij}m'(j,k). \end{aligned}$$
(27)

Thus, from Eqs. (27) and (9), we derive the following recurrence relations for \(m\left( i,k\right) \):

$$\begin{aligned} m\left( i,k\right) =\sum _{j\in \mathop {\mathbf {I}}\nolimits \left( i\right) \setminus E_{A}} \theta _{ij}m\left( j,k\right) +\sum _{i'=1}^{h}\theta _{i\varsigma \left( i'\right) }\delta _{k,n+n'+i'}, \end{aligned}$$
(28)

where we define \(\theta _{i\varsigma \left( i'\right) }=0\) for \(i'\) such that \(\varsigma \left( i'\right) \not \in \mathop {\mathbf {I}}\nolimits \left( i\right) \).

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kato, G., Owari, M., Hayashi, M. (2017). Single-Shot Secure Quantum Network Coding for General Multiple Unicast Network with Free Public Communication. In: Shikata, J. (eds) Information Theoretic Security. ICITS 2017. Lecture Notes in Computer Science(), vol 10681. Springer, Cham. https://doi.org/10.1007/978-3-319-72089-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72089-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72088-3

  • Online ISBN: 978-3-319-72089-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics