Skip to main content

Immune Human Antibody Libraries for Infectious Diseases

  • Chapter
  • First Online:
Recombinant Antibodies for Infectious Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1053))

Abstract

The incident of two children in Europe who died of diphtheria due to a shortage of anti-toxin drugs has highlighted the need for alternative anti-toxins. Historically, antiserum produced from immunised horses have been used to treat diphtheria. Despite the potential of antiserum, the economical and medial concerns associated with the use of animal antiserum has led to its slow market demise. Over the years, new and emerging infectious diseases have grown to be a major global health threat. The emergence of drug-resistant superbugs has also pushed the boundaries of available therapeutics to deal with new infectious diseases. Antibodies have emerged as a possible alternative to combat the continuous onslaught of various infectious agents. The isolation of antibodies against pathogens of infectious diseases isolated from immune libraries utilising phage display has yielded promising results in terms of affinities and neutralizing activities. This chapter focuses on the concept of immune antibody libraries and highlights the application of immune antibody libraries to generate antibodies for various infectious diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 189.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aghebati-Maleki L, Bakhshinejad B, Baradaran B, Motallebnezhad M, Aghebati-Maleki A, Nickho H, Yousefi M, Majidi J (2016) Phage display as a promising approach for vaccine development. J Biomed Sci 23(1):66

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Ariyoshi K, van der Loeff MS, Berry N, Jaffar S, Whittle H (1999) Plasma HIV viral load in relation to season and to Plasmodium falciparum parasitaemia. AIDS 13(9):1145

    Article  CAS  PubMed  Google Scholar 

  3. Ariyoshi K, Jaffar S, Alabi AS, Berry N, van der Loeff MS, Sabally S, N’gom PT, Corrah T, Tedder R, Whittle H (2000) Plasma RNA viral load predicts the rate of CD4 T cell decline and death in HIV-2-infected patients in West Africa. AIDS 14(4):339–344

    Article  CAS  PubMed  Google Scholar 

  4. Baize S, Pannetier D, Oestereich L, Rieger T, Koivogui L, Magassouba NF, Soropogui B, Sow MS, Keïta S, De Clerck H (2014) Emergence of Zaire Ebola virus disease in Guinea. N Engl J Med 371(15):1418–1425

    Article  CAS  PubMed  Google Scholar 

  5. Balzarini J (2005) Targeting the glycans of gp120: a novel approach aimed at the Achilles heel of HIV. Lancet Infect Dis 5(11):726–731

    Article  CAS  PubMed  Google Scholar 

  6. Basu R, Tumban E (2016) Zika Virus on a Spreading Spree: what we now know that was unknown in the 1950’s. Virol J 13(1):165

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bazan J, Całkosiński I, Gamian A (2012) Phage display—A powerful technique for immunotherapy: 1. Introduction and potential of therapeutic applications. Hum Vaccin Immunother 8(12):1817–1828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Benichou J, Ben-Hamo R, Louzoun Y, Efroni S (2012) Rep-Seq: uncovering the immunological repertoire through next-generation sequencing. Immunology 135(3):183–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Berry JD, Popkov M, Sidhu S (2005) Antibody libraries from immunized repertoires. In: Phage Display in Biotechnology and Drug Discovery, vol 3. CRC Press, New York

    Google Scholar 

  10. Boder ET, Raeeszadeh-Sarmazdeh M, Price JV (2012) Engineering antibodies by yeast display. Arch Biochem Biophys 526(2):99–106

    Article  CAS  PubMed  Google Scholar 

  11. Bolmstedt A, Sjölander S, Hansen J-ES, Åkerblom L, Hemming A, Hu S-L, Morein B, Olofsson S (1996) Influence of N-linked glycans in V4-V5 region of human immunodeficiency virus type 1 glycoprotein gp160 on induction of a virus-neutralizing humoral response. J Acquir Immune Defic Syndr 12(3):213–220

    Article  CAS  Google Scholar 

  12. Bowley D, Labrijn A, Zwick M, Burton D (2007) Antigen selection from an HIV-1 immune antibody library displayed on yeast yields many novel antibodies compared to selection from the same library displayed on phage. Protein Eng Des Sel 20(2):81–90

    Article  CAS  PubMed  Google Scholar 

  13. Bradbury AR, Sidhu S, Dübel S, McCafferty J (2011) Beyond natural antibodies: the power of in vitro display technologies. Nat Biotechnol 29(3):245–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bressanelli S, Stiasny K, Allison SL, Stura EA, Duquerroy S, Lescar J, Heinz FX, Rey FA (2004) Structure of a flavivirus envelope glycoprotein in its low-pH-induced membrane fusion conformation. EMBO J 23(4):728–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Briand S, Bertherat E, Cox P, Formenty P, Kieny M-P, Myhre JK, Roth C, Shindo N, Dye C (2014) The international Ebola emergency. N Engl J Med 371(13):1180–1183

    Article  PubMed  Google Scholar 

  16. Bruel T, Guivel-Benhassine F, Amraoui S, Malbec M, Richard L, Bourdic K, Donahue DA, Lorin V, Casartelli N, Noël N (2016) Elimination of HIV-1-infected cells by broadly neutralizing antibodies. Nat Commun 7:10844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Buchwald U, Pirofski L (2003) Immune therapy for infectious diseases at the dawn of the 21st century: the past, present and future role of antibody therapy, therapeutic vaccination and biological response modifiers. Curr Pharm Des 9(12):945–968

    Article  CAS  PubMed  Google Scholar 

  18. Burton DR, Mascola JR (2015) Antibody responses to envelope glycoproteins in HIV-1 infection. Nat Immunol 16(6):571–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Burton DR, Poignard P, Stanfield RL, Wilson IA (2012) Broadly neutralizing antibodies present new prospects to counter highly antigenically diverse viruses. Science 337(6091):183–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Casadevall A (1996) Antibody-based therapies for emerging infectious diseases. Emerg Infect Dis 2(3):200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Casadevall A, Scharff MD (1994) Serum therapy revisited: animal models of infection and development of passive antibody therapy. Antimicrob Agents Chemother 38(8):1695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Casadevall A, Scharff MD (1995) Return to the past: the case for antibody-based therapies in infectious diseases. Clin Infect Dis 21(1):150–161

    Article  CAS  PubMed  Google Scholar 

  23. Casadevall A, Dadachova E, Pirofski L-A (2004) Passive antibody therapy for infectious diseases. Nat Rev Microbiol 2(9):695–703

    Article  CAS  PubMed  Google Scholar 

  24. Chan CE, Lim AP, MacAry PA, Hanson BJ (2014) The role of phage display in therapeutic antibody discovery. Int Immunol 26(12):649–657. dxu082

    Article  CAS  PubMed  Google Scholar 

  25. Che Y-J, H-W W, Hung L-Y, Liu C-A, Chang H-Y, Wang K, Lee G-B (2015) An integrated microfluidic system for screening of phage-displayed peptides specific to colon cancer cells and colon cancer stem cells. Biomicrofluidics 9(5):054121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Chen W, Zhu Z, Xiao X, Dimitrov DS (2009) Construction of a human antibody domain (VH) library. In: Therapeutic antibodies: methods and protocols. Humana Press, New York, pp 81–99

    Chapter  Google Scholar 

  27. Cherrier MV, Kaufmann B, Nybakken GE, Lok SM, Warren JT, Chen BR, Nelson CA, Kostyuchenko VA, Holdaway HA, Chipman PR (2009) Structural basis for the preferential recognition of immature flaviviruses by a fusion-loop antibody. EMBO J 28(20):3269–3276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Colombini EG, Oroszlan S, Staal S, Gallo R (1983) Isolation of human T-cell leukemia virus in acquired immune deficiency syndrome (AIDS). Science 220:865–867

    Article  Google Scholar 

  29. Cooper C (2014) How the Ebolavirus got its name and how we caught it from animals

    Google Scholar 

  30. Correia BE, Bates JT, Loomis RJ, Baneyx G, Carrico C, Jardine JG, Rupert P, Correnti C, Kalyuzhniy O, Vittal V (2014) Proof of principle for epitope-focused vaccine design. Nature 507(7491):201–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Corti D, Misasi J, Mulangu S, Stanley DA, Kanekiyo M, Wollen S, Ploquin A, Doria-Rose NA, Staupe RP, Bailey M (2016a) Protective monotherapy against lethal Ebola virus infection by a potently neutralizing antibody. Science 351:1339–1342. aad5224

    Article  CAS  PubMed  Google Scholar 

  32. Corti D, Misasi J, Mulangu S, Stanley DA, Kanekiyo M, Wollen S, Ploquin A, Doria-Rose NA, Staupe RP, Bailey M (2016b) Protective monotherapy against lethal Ebola virus infection by a potently neutralizing antibody. Science 351(6279):1339–1342

    Article  CAS  PubMed  Google Scholar 

  33. Dai L, Song J, Lu X, Deng Y-Q, Musyoki AM, Cheng H, Zhang Y, Yuan Y, Song H, Haywood J (2016) Structures of the Zika virus envelope protein and its complex with a Flavivirus broadly protective antibody. Cell Host Microbe 19(5):696–704

    Article  CAS  PubMed  Google Scholar 

  34. De Jong MD, Thanh TT, Khanh TH, Hien VM, Smith GJ, Chau NV, Cam BV, Qui PT, Ha DQ, Guan Y (2005) Oseltamivir resistance during treatment of influenza A (H5N1) infection. N Engl J Med 353(25):2667–2672

    Article  PubMed  Google Scholar 

  35. Decroly E, Vandenbranden M, Ruysschaert J-M, Cogniaux J, Jacob GS, Howard SC, Marshall G, Kompelli A, Basak A, Jean F (1994) The convertases furin and PC1 can both cleave the human immunodeficiency virus (HIV)-1 envelope glycoprotein gp160 into gp120 (HIV-1 SU) and gp41 (HIV-I TM). J Biol Chem 269(16):12240–12247

    CAS  PubMed  Google Scholar 

  36. Dejnirattisai W, Supasa P, Wongwiwat W, Rouvinski A, Barba-Spaeth G, Duangchinda T, Sakuntabhai A, Cao-Lormeau V-M, Malasit P, Rey FA (2016) Dengue virus sero-cross-reactivity drives antibody-dependent enhancement of infection with Zika virus. Nat Immunol 17(9):1102–1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dick G (1952) Zika virus (II). Pathogenicity and physical properties. Trans R Soc Trop Med Hyg 46(5):521–534

    Article  CAS  PubMed  Google Scholar 

  38. Dick G, Kitchen S, Haddow A (1952) Zika virus (I). Isolations and serological specificity. Trans R Soc Trop Med Hyg 46(5):509–520

    Article  CAS  PubMed  Google Scholar 

  39. DiLillo DJ, Palese P, Wilson PC, Ravetch JV (2016) Broadly neutralizing anti-influenza antibodies require Fc receptor engagement for in vivo protection. J Clin Invest 126(2):605

    Article  PubMed  PubMed Central  Google Scholar 

  40. Doria-Rose NA, Klein RM, Daniels MG, O’Dell S, Nason M, Lapedes A, Bhattacharya T, Migueles SA, Wyatt RT, Korber BT (2010) Breadth of human immunodeficiency virus-specific neutralizing activity in sera: clustering analysis and association with clinical variables. J Virol 84(3):1631–1636

    Article  CAS  PubMed  Google Scholar 

  41. Dreyfus C, Laursen NS, Kwaks T, Zuijdgeest D, Khayat R, Ekiert DC, Lee JH, Metlagel Z, Bujny MV, Jongeneelen M (2012) Highly conserved protective epitopes on influenza B viruses. Science 337(6100):1343–1348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dreyfus C, Ekiert DC, Wilson IA (2013) Structure of a classical broadly neutralizing stem antibody in complex with a pandemic H2 influenza virus hemagglutinin. J Virol 87(12):7149–7154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ekiert DC, Bhabha G, Elsliger M-A, Friesen RH, Jongeneelen M, Throsby M, Goudsmit J, Wilson IA (2009) Antibody recognition of a highly conserved influenza virus epitope. Science 324(5924):246–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ekiert DC, Kashyap AK, Steel J, Rubrum A, Bhabha G, Khayat R, Lee JH, Dillon MA, O’Neil RE, Faynboym AM (2012) Cross-neutralization of influenza A viruses mediated by a single antibody loop. Nature 489(7417):526–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ewert S, Cambillau C, Conrath K, Plückthun A (2002) Biophysical properties of camelid VHH domains compared to those of human VH3 domains. Biochemistry 41(11):3628–3636

    Article  CAS  PubMed  Google Scholar 

  46. Falkowska E, Ramos A, Feng Y, Zhou T, Moquin S, Walker LM, Wu X, Seaman MS, Wrin T, Kwong PD (2012) PGV04, an HIV-1 gp120 CD4 binding site antibody, is broad and potent in neutralization but does not induce conformational changes characteristic of CD4. J Virol 86(8):4394–4403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ferrari G, Pollara J, Kozink D, Harms T, Drinker M, Freel S, Moody MA, Alam SM, Tomaras GD, Ochsenbauer C (2011) An HIV-1 gp120 envelope human monoclonal antibody that recognizes a C1 conformational epitope mediates potent antibody-dependent cellular cytotoxicity (ADCC) activity and defines a common ADCC epitope in human HIV-1 serum. J Virol 85(14):7029–7036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fields B, Knipe D, Howley P, Griffin D (2007) Fields virology, 5th edn. Wolters Kluwer Health/Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  49. Franzusoff A, Volpe AM, Josse D, Pichuantes S, Wolf JR (1995) Biochemical and genetic definition of the cellular protease required for HIV-1 gp160 processing. J Biol Chem 270(7):3154–3159

    Article  CAS  PubMed  Google Scholar 

  50. Frenzel A, Schirrmann T, Hust M (2016) Phage display-derived human antibodies in clinical development and therapy. MAbs 7:1177–1194. Taylor & Francis

    Article  CAS  Google Scholar 

  51. Friesen RH, Lee PS, Stoop EJ, Hoffman RM, Ekiert DC, Bhabha G, Yu W, Juraszek J, Koudstaal W, Jongeneelen M (2014) A common solution to group 2 influenza virus neutralization. Proc Natl Acad Sci 111(1):445–450

    Article  CAS  PubMed  Google Scholar 

  52. Froude JW, Pelat T, Miethe S, Zak SE, Wec AZ, Chandran K, Brannan JM, Bakken RR, Hust M, Thullier P (2017) Generation and characterization of protective antibodies to Marburg virus. mAbs 4:696–703. Taylor & Francis

    Article  CAS  Google Scholar 

  53. Gad SC (2007) Handbook of pharmaceutical biotechnology, vol 2. Wiley, Hoboken

    Book  Google Scholar 

  54. Georgiou G, Ippolito GC, Beausang J, Busse CE, Wardemann H, Quake SR (2014) The promise and challenge of high-throughput sequencing of the antibody repertoire. Nat Biotechnol 32(2):158–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gray ES, Madiga MC, Hermanus T, Moore PL, Wibmer CK, Tumba NL, Werner L, Mlisana K, Sibeko S, Williamson C (2011) The neutralization breadth of HIV-1 develops incrementally over four years and is associated with CD4+ T cell decline and high viral load during acute infection. J Virol 85(10):4828–4840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hai R, Krammer F, Tan GS, Pica N, Eggink D, Maamary J, Margine I, Albrecht RA, Palese P (2012) Influenza viruses expressing chimeric hemagglutinins: globular head and stalk domains derived from different subtypes. J Virol 86(10):5774–5781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hamilton BS, Whittaker GR, Daniel S (2012) Influenza virus-mediated membrane fusion: determinants of hemagglutinin fusogenic activity and experimental approaches for assessing virus fusion. Virus 4(7):1144–1168

    Article  CAS  Google Scholar 

  58. Hasan SS, Miller A, Sapparapu G, Fernandez E, Klose T, Long F, Fokine A, Porta JC, Jiang W, Diamond MS (2017) A human antibody against Zika virus crosslinks the E protein to prevent infection. Nat Commun 8:14722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. He M, Taussig MJ (1997) Antibody-ribosome-mRNA (ARM) complexes as efficient selection particles for in vitro display and evolution of antibody combining sites. Nucleic Acids Res 25(24):5132–5134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Headley CM (2011) Bad bugs, bad bugs-whatcha gonna do when they come for you? Nephrol Nurs J 38(5):433

    PubMed  Google Scholar 

  61. Hensley SE, Das SR, Bailey AL, Schmidt LM, Hickman HD, Jayaraman A, Viswanathan K, Raman R, Sasisekharan R, Bennink JR (2009) Hemagglutinin receptor binding avidity drives influenza A virus antigenic drift. Science 326(5953):734–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hey A (2015) History and practice: antibodies in infectious diseases. Microbiol Spectr 3(2)

    Google Scholar 

  63. Hezareh M, Hessell AJ, Jensen RC, van de Winkel JG, Parren PW (2001) Effector function activities of a panel of mutants of a broadly neutralizing antibody against human immunodeficiency virus type 1. J Virol 75(24):12161–12168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hicar MD, Chen X, Sulli C, Barnes T, Goodman J, Sojar H, Briney B, Willis J, Chukwuma VU, Kalams SA (2016) Human antibodies that recognize novel immunodominant quaternary epitopes on the HIV-1 Env protein. PLoS One 11(7):e0158861

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Horiya S, MacPherson IS, Krauss IJ (2014) Recent strategies targeting HIV glycans in vaccine design. Nat Chem Biol 10(12):990–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Huang JX, Bishop-Hurley SL, Cooper MA (2012) Development of anti-infectives using phage display: biological agents against bacteria, viruses, and parasites. Antimicrob Agents Chemother 56(9):4569–4582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Huse WD, Sastry L, Iverson SA, Kang AS, Alting-Mees M, Burton DR, Benkovic SJ, Lerner RA (1989) Generation of a large combinatorial library of the immunoglobulin repertoire in phage lambda. Science 246(4935):1275–1281

    Article  CAS  PubMed  Google Scholar 

  68. Hust M, Dübel S (2004) Mating antibody phage display with proteomics. Trends Biotechnol 22(1):8–14

    Article  CAS  PubMed  Google Scholar 

  69. Jagadesh A, Salam AAA, Mudgal PP, Arunkumar G (2016) Influenza virus neuraminidase (NA): a target for antivirals and vaccines. Arch Virol 161(8):2087–2094

    Article  CAS  PubMed  Google Scholar 

  70. Jain RK (1990) Physiological barriers to delivery of monoclonal antibodies and other macromolecules in tumors. Cancer Res 50(3 Supplement):814s–819s

    CAS  PubMed  Google Scholar 

  71. Julien J-P, Cupo A, Sok D, Stanfield RL, Lyumkis D, Deller MC, Klasse P-J, Burton DR, Sanders RW, Moore JP (2013a) Crystal structure of a soluble cleaved HIV-1 envelope trimer. Science 342(6165):1477–1483

    Article  CAS  PubMed  Google Scholar 

  72. Julien J-P, Sok D, Khayat R, Lee JH, Doores KJ, Walker LM, Ramos A, Diwanji DC, Pejchal R, Cupo A (2013b) Broadly neutralizing antibody PGT121 allosterically modulates CD4 binding via recognition of the HIV-1 gp120 V3 base and multiple surrounding glycans. PLoS Pathog 9(5):e1003342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kaminski DA, Lee F (2011) Antibodies against conserved antigens provide opportunities for reform in influenza vaccine design. Front Immunol 2(76.10):3389

    Google Scholar 

  74. Keck Z-Y, Enterlein SG, Howell KA, Vu H, Shulenin S, Warfield KL, Froude JW, Araghi N, Douglas R, Biggins J (2016) Macaque monoclonal antibodies targeting novel conserved epitopes within filovirus glycoprotein. J Virol 90(1):279–291

    Article  CAS  PubMed  Google Scholar 

  75. Koh WW, Steffensen S, Gonzalez-Pajuelo M, Hoorelbeke B, Gorlani A, Szynol A, Forsman A, Aasa-Chapman MM, de Haard H, Verrips T (2010) Generation of a family-specific phage library of llama single chain antibody fragments that neutralize HIV-1. J Biol Chem 285(25):19116–19124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Köhler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256(5517):495–497

    Article  PubMed  Google Scholar 

  77. Kramski M, Stratov I, Kent SJ (2015) The role of HIV-specific antibody-dependent cellular cytotoxicity in HIV prevention and the influence of the HIV-1 Vpu protein. AIDS 29(2):137–144

    Article  CAS  PubMed  Google Scholar 

  78. Kuhn JH, Bào Y, Bavari S, Becker S, Bradfute S, Brauburger K, Brister JR, Bukreyev AA, Caì Y, Chandran K (2014) Virus nomenclature below the species level: a standardized nomenclature for filovirus strains and variants rescued from cDNA. Arch Virol 159(5):1229–1237

    CAS  PubMed  Google Scholar 

  79. Kuhn P, Fühner V, Unkauf T, Moreira GMSG, Frenzel A, Miethe S, Hust M (2016) Recombinant antibodies for diagnostics and therapy against pathogens and toxins generated by phage display. PROTEOMICS-Clin Appl 10(9–10):922–948

    Article  CAS  PubMed  Google Scholar 

  80. Kumar R, Andrabi R, Tiwari A, Prakash SS, Wig N, Dutta D, Sankhyan A, Khan L, Sinha S, Luthra K (2012) A novel strategy for efficient production of anti-V3 human scFvs against HIV-1 clade C. BMC Biotechnol 12(1):87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kwong PD, Mascola JR (2012) Human antibodies that neutralize HIV-1: identification, structures, and B cell ontogenies. Immunity 37(3):412–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Laursen NS, Wilson IA (2013) Broadly neutralizing antibodies against influenza viruses. Antivir Res 98(3):476–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lazear HM, Diamond MS (2016) Zika virus: new clinical syndromes and its emergence in the Western Hemisphere. J Virol 90(10):4864–4875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Le QM, Kiso M, Someya K, Sakai YT, Nguyen TH, Nguyen KH, Pham ND, Ngyen HH, Yamada S, Muramoto Y (2005) Avian flu: isolation of drug-resistant H5N1 virus. Nature 437(7062):1108–1108

    Article  CAS  PubMed  Google Scholar 

  85. Lee CV, Sidhu SS, Fuh G (2004) Bivalent antibody phage display mimics natural immunoglobulin. J Immunol Methods 284(1):119–132

    Article  CAS  PubMed  Google Scholar 

  86. Lee PS, Yoshida R, Ekiert DC, Sakai N, Suzuki Y, Takada A, Wilson IA (2012) Heterosubtypic antibody recognition of the influenza virus hemagglutinin receptor binding site enhanced by avidity. Proc Natl Acad Sci 109(42):17040–17045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lee WS, Parsons MS, Kent SJ, Lichtfuss M (2015) Can HIV-1-specific ADCC assist the clearance of reactivated latently infected cells? Front Immunol 6:265

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Li X, Wang J, Coutavas E, Shi H, Hao Q, Blobel G (2016) Structure of human Niemann–Pick C1 protein. Proc Natl Acad Sci 113(29):8212–8217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lim T, Chan S (2016) Immunized antibody libraries: manipulating the diverse immune repertoire for antibody discovery. Curr Pharm Des 22(43):6480–6489

    CAS  PubMed  Google Scholar 

  90. Lim BN, Tye GJ, Choong YS, Ong EBB, Ismail A, Lim TS (2014) Principles and application of antibody libraries for infectious diseases. Biotechnol Lett 36(12):2381–2392

    Article  CAS  PubMed  Google Scholar 

  91. Lim BN, Chin CF, Choong YS, Ismail A, Lim TS (2016) Generation of a naïve human single chain variable fragment (scFv) library for the identification of monoclonal scFv against Salmonella Typhi Hemolysin E antigen. Toxicon 117:94–101

    Article  CAS  PubMed  Google Scholar 

  92. Lock RL, Harry EJ (2008) Cell-division inhibitors: new insights for future antibiotics. Nat Rev Drug Discov 7(4):324–338

    Article  CAS  PubMed  Google Scholar 

  93. Martina BE, Koraka P, van Den Doel P, van Amerongen G, Rimmelzwaan GF, Osterhaus AD (2008) Immunization with West Nile virus envelope domain III protects mice against lethal infection with homologous and heterologous virus. Vaccine 26(2):153–157

    Article  CAS  PubMed  Google Scholar 

  94. Maruyama T, Rodriguez LL, Jahrling PB, Sanchez A, Khan AS, Nichol ST, Peters C, Parren PW, Burton DR (1999) Ebola virus can be effectively neutralized by antibody produced in natural human infection. J Virol 73(7):6024–6030

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Mascola JR, Haynes BF (2013) HIV-1 neutralizing antibodies: understanding nature’s pathways. Immunol Rev 254(1):225–244

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Mathonet P, Ullman CG (2013) The application of next generation sequencing to the understanding of antibody repertoires. Front Immunol 4(265.10):3389

    Google Scholar 

  97. Medina RA, García-Sastre A (2011) Influenza A viruses: new research developments. Nat Rev Microbiol 9(8):590–603

    Article  CAS  PubMed  Google Scholar 

  98. Meulen J (2007) Monoclonal antibodies for prophylaxis and therapy of infectious diseases. Expert Opin Emerg Drugs 12(4):525–540

    Article  CAS  PubMed  Google Scholar 

  99. Modis Y, Ogata S, Clements D, Harrison SC (2004) Structure of the dengue virus envelope protein after membrane fusion. Nature 427(6972):313–319

    Article  CAS  PubMed  Google Scholar 

  100. Moon SA, Ki MK, Lee S, Hong M-L, Kim M, Kim S, Chung J, Rhee SG, Shim H (2011) Antibodies against non-immunizing antigens derived from a large immune scFv library. Mol Cells 31(6):509–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Moore JP, McKeating JA, Weiss RA, Sattentau QJ (1990) Dissociation of gp120 from HIV-1 virions induced by soluble CD4. Science 250(4984):1139

    Article  CAS  PubMed  Google Scholar 

  102. Morand S, Jittapalapong S, Suputtamongkol Y, Abdullah MT, Huan TB (2014) Infectious diseases and their outbreaks in Asia-Pacific: biodiversity and its regulation loss matter. PLoS One 9(2):e90032

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Mouquet H, Klein F, Scheid JF, Warncke M, Pietzsch J, Oliveira TY, Velinzon K, Seaman MS, Nussenzweig MC (2011) Memory B cell antibodies to HIV-1 gp140 cloned from individuals infected with clade A and B viruses. PLoS One 6(9):e24078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Mouratou B, Béhar G, Paillard-Laurance L, Colinet S, Pecorari F (2012) Ribosome display for the selection of Sac7d scaffolds. In: Ribosome Display and Related Technologies. Springer, New York, pp 315–331

    Chapter  Google Scholar 

  105. Mullen LM, Nair SP, Ward JM, Rycroft AN, Henderson B (2006) Phage display in the study of infectious diseases. Trends Microbiol 14(3):141–147

    Article  CAS  PubMed  Google Scholar 

  106. Murin CD, Fusco ML, Bornholdt ZA, Qiu X, Olinger GG, Zeitlin L, Kobinger GP, Ward AB, Saphire EO (2014) Structures of protective antibodies reveal sites of vulnerability on Ebola virus. Proc Natl Acad Sci 111(48):17182–17187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Naseem S, Meens J, Jores J, Heller M, Dübel S, Hust M, Gerlach G-F (2010) Phage display-based identification and potential diagnostic application of novel antigens from Mycoplasma mycoides subsp. mycoides small colony type. Vet Microbiol 142(3):285–292

    Article  CAS  PubMed  Google Scholar 

  108. Nelson AL (2010) Antibody fragments: hope and hype. MAbs 1:77–83. Taylor & Francis

    Article  Google Scholar 

  109. Nii-Trebi NI (2017) Emerging and neglected infectious diseases: insights, advances, and challenges. Biomed Res Int 2017:1

    Article  Google Scholar 

  110. Nowakowski A, Wang C, Powers D, Amersdorfer P, Smith T, Montgomery V, Sheridan R, Blake R, Smith L, Marks J (2002) Potent neutralization of botulinum neurotoxin by recombinant oligoclonal antibody. Proc Natl Acad Sci 99(17):11346–11350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Overbaugh J, Morris L (2012) The antibody response against HIV-1. Cold Spring Harb Perspect Med 2(1):a007039

    Article  PubMed  PubMed Central  Google Scholar 

  112. Palese P, Lowen AC (2007) Influenza virus transmission: basic science and implications for the use of antiviral drugs during a pandemic. Infect Disord Drug Targets (Formerly Curr Drug Targets Infect Disord) 7(4):318–328

    Google Scholar 

  113. Pancera M, Shahzad-ul-Hussan S, Doria-Rose NA, McLellan JS, Bailer RT, Dai K, Loesgen S, Louder MK, Staupe RP, Yang Y (2013) Structural basis for diverse N-glycan recognition by HIV-1–neutralizing V1–V2–directed antibody PG16. Nat Struct Mol Biol 20(7):804–813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Pandey S (2010) Hybridoma technology for production of monoclonal antibodies. Hybridoma 1(2):017

    Google Scholar 

  115. Patel CA, Wang J, Wang X, Dong F, Zhong P, Luo PP, Wang KC (2011) Parallel selection of antibody libraries on phage and yeast surfaces via a cross-species display. Protein Eng Des Sel 24(9):711–719

    Article  CAS  PubMed  Google Scholar 

  116. Paul LM, Carlin ER, Jenkins MM, Tan AL, Barcellona CM, Nicholson CO, Trautmann L, Michael SF, Isern S (2016) Dengue virus antibodies enhance Zika virus infection. bioRxiv:050112

    Google Scholar 

  117. Perrin L, Kaiser L, Yerly S (2003) Travel and the spread of HIV-1 genetic variants. Lancet Infect Dis 3(1):22–27

    Article  PubMed  Google Scholar 

  118. Pettitt J, Zeitlin L, Kim DH, Working C, Johnson JC, Bohorov O, Bratcher B, Hiatt E, Hume SD, Johnson AK (2013) Therapeutic intervention of Ebola virus infection in rhesus macaques with the MB-003 monoclonal antibody cocktail. Sci Transl Med 5(199):199ra113–199ra113

    Article  PubMed  Google Scholar 

  119. Pietzsch J, Scheid JF, Mouquet H, Seaman MS, Broder CC, Nussenzweig MC (2010) Anti-gp41 antibodies cloned from HIV-infected patients with broadly neutralizing serologic activity. J Virol 84(10):5032–5042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Plückthun A (2012) Ribosome display: a perspective. In: Ribosome display and related technologies. Springer, New York, pp 3–28

    Chapter  Google Scholar 

  121. Ponsel D, Neugebauer J, Ladetzki-Baehs K, Tissot K (2011) High affinity, developability and functional size: the holy grail of combinatorial antibody library generation. Molecules 16(5):3675–3700

    Article  CAS  PubMed  Google Scholar 

  122. Priyamvada L, Quicke KM, Hudson WH, Onlamoon N, Sewatanon J, Edupuganti S, Pattanapanyasat K, Chokephaibulkit K, Mulligan MJ, Wilson PC (2016) Human antibody responses after dengue virus infection are highly cross-reactive to Zika virus. Proc Natl Acad Sci 113(28):7852–7857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Qiu X, Wong G, Audet J, Bello A, Fernando L, Alimonti JB, Fausther-Bovendo H, Wei H, Aviles J, Hiatt E (2014) Reversion of advanced Ebola virus disease in nonhuman primates with ZMapp. Nature 514:47–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Quintero-Hernández V, Juárez-González VR, Ortíz-León M, Sánchez R, Possani LD, Becerril B (2007) The change of the scFv into the Fab format improves the stability and in vivo toxin neutralization capacity of recombinant antibodies. Mol Immunol 44(6):1307–1315

    Article  PubMed  CAS  Google Scholar 

  125. Rader C, Steinberger P, Barbas C III (2001) Selection from antibody libraries. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  126. Rahman SR, Ahmed MF, Islam MA, Rahman MM (2016) Effect of risk factors on the prevalence of influenza infections among children of slums of Dhaka city. SpringerPlus 5(1):602

    Article  PubMed  PubMed Central  Google Scholar 

  127. Rahumatullah A, Ahmad A, Noordin R, Lim TS (2015) Delineation of BmSXP antibody V-gene usage from a lymphatic filariasis based immune scFv antibody library. Mol Immunol 67(2):512–523

    Article  CAS  PubMed  Google Scholar 

  128. Raska M, Czernekova L, Moldoveanu Z, Zachova K, Elliott MC, Novak Z, Hall S, Hoelscher M, Maboko L, Brown R (2014) Differential glycosylation of envelope gp120 is associated with differential recognition of HIV-1 by virus-specific antibodies and cell infection. AIDS Res Ther 11(1):23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Rasko DA, Sperandio V (2010) Anti-virulence strategies to combat bacteria-mediated disease. Nat Rev Drug Discov 9(2):117–128

    Article  CAS  PubMed  Google Scholar 

  130. Ravn U, Gueneau F, Baerlocher L, Osteras M, Desmurs M, Malinge P, Magistrelli G, Farinelli L, Kosco-Vilbois M, Fischer N (2010) By-passing in vitro screening—next generation sequencing technologies applied to antibody display and in silico candidate selection. Nucleic Acids Res 38(21):e193–e193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Redwan E-RM, Khalil A, El-Dardiri ZZ (2005) Production and purification of ovine anti-tetanus antibody. Comp Immunol Microbiol Infect Dis 28(3):167–176

    Article  Google Scholar 

  132. Reitter JN, Means RE, Desrosiers RC (1998) A role for carbohydrates in immune evasion in AIDS. Nat Med 4(6):679–684

    Article  CAS  PubMed  Google Scholar 

  133. Reynard O, Volchkov VE (2015) Characterization of a novel neutralizing monoclonal antibody against Ebola virus GP. J Infect Dis 212(2):S372–S378. jiv303

    Article  CAS  PubMed  Google Scholar 

  134. Ricardo Goulart L, Souza Santos P, Paula Carneiro A, Brasil Santana B, Vallinoto CA, Goncalves Araujo T (2016) Unraveling antibody display: systems biology and personalized medicine. Curr Pharm Des 22(43):6560–6576

    Article  CAS  Google Scholar 

  135. Richman DD, Whitley RJ, Hayden FG (2009) Clinical virology. American Society for Microbiology Press, Washington, DC

    Google Scholar 

  136. Rockberg J, Löfblom J, Hjelm B, Uhlén M, Ståhl S (2008) Epitope mapping of antibodies using bacterial surface display. Nat Methods 5(12):1039–1045

    Article  CAS  PubMed  Google Scholar 

  137. Salzberg S (2008) The contents of the syringe. Nature 454(7201):160–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Santoro MM, Perno CF (2013) HIV-1 genetic variability and clinical implications. ISRN Microbiol 2013:1

    Article  Google Scholar 

  139. Saphire EO (2013) An update on the use of antibodies against the filoviruses. Immunotherapy 5(11):1221–1233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Sapparapu G, Fernandez E, Kose N, Cao B, Fox JM, Bombardi RG, Zhao H, Nelson CA, Bryan AL, Barnes T (2016) Neutralizing human antibodies prevent Zika virus replication and fetal disease in mice. Nature 540(7633):443–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Schneeweiss A, Chabierski S, Salomo M, Delaroque N, Al-Robaiy S, Grunwald T, Bürki K, Liebert UG, Ulbert S (2011) A DNA vaccine encoding the E protein of West Nile virus is protective and can be boosted by recombinant domain DIII. Vaccine 29(37):6352–6357

    Article  CAS  PubMed  Google Scholar 

  142. Sesardic T (2015) Neutralizing antibodies directed against Botulinum A and B toxin heavy and light chains. Immunome Res 11(S1):44

    Google Scholar 

  143. Shrestha B, Brien JD, Sukupolvi-Petty S, Austin SK, Edeling MA, Kim T, O’Brien KM, Nelson CA, Johnson S, Fremont DH (2010) The development of therapeutic antibodies that neutralize homologous and heterologous genotypes of dengue virus type 1. PLoS Pathog 6(4):e1000823

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Singh SR, Krishnamurthy N, Mathew BB (2014) A review on recent diseases caused by microbes. J Appl Environ Microbiol 2(4):106–115

    Google Scholar 

  145. Skehel JJ, Wiley DC (2000) Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu Rev Biochem 69(1):531–569

    Article  CAS  PubMed  Google Scholar 

  146. Skerra A, Pluckthun A (1988) Assembly of a functional immunoglobulin Fv fragment in Escherichia coli. Science 240(4855):1038

    Article  CAS  PubMed  Google Scholar 

  147. Spatola BN, Murray JA, Kagnoff M, Kaukinen K, Daugherty PS (2012) Antibody repertoire profiling using bacterial display identifies reactivity signatures of celiac disease. Anal Chem 85(2):1215–1222

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Stamatatos L, Morris L, Burton DR, Mascola JR (2009) Neutralizing antibodies generated during natural HIV-1 infection: good news for an HIV-1 vaccine? Nat Med 15(8):866–870

    Article  CAS  PubMed  Google Scholar 

  149. Stephenson KE, Barouch DH (2016) Broadly neutralizing antibodies for HIV eradication. Curr HIV/AIDS Rep 13(1):31–37

    Article  PubMed  PubMed Central  Google Scholar 

  150. Sukupolvi-Petty S, Austin SK, Engle M, Brien JD, Dowd KA, Williams KL, Johnson S, Rico-Hesse R, Harris E, Pierson TC (2010) Structure and function analysis of therapeutic monoclonal antibodies against dengue virus type 2. J Virol 84(18):9227–9239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Tahery J, Morris DP, Birzgalis AR (2004) Tetanus: the ‘forgotten disease’. A rare cause of dysphagia and trismus. J Laryngol Otol 118(12):974–976

    Article  PubMed  Google Scholar 

  152. Taylor BS, Sobieszczyk ME, McCutchan FE, Hammer SM (2008) The challenge of HIV-1 subtype diversity. N Engl J Med 358(15):1590–1602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Trott M, Weiß S, Antoni S, Koch J, von Briesen H, Hust M, Dietrich U (2014) Functional characterization of two scFv-Fc antibodies from an HIV controller selected on soluble HIV-1 Env complexes: a neutralizing V3-and a trimer-specific gp41 antibody. PLoS One 9(5):e97478

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Tung C-P, Chen I-C, C-M Y, Peng H-P, Jian J-W, Ma S-H, Lee Y-C, Jan J-T, Yang A-S (2014) Discovering neutralizing antibodies targeting the stem epitope of H1N1 influenza hemagglutinin with synthetic phage-displayed antibody libraries. Sci Rep 5:15053–15053

    Article  CAS  Google Scholar 

  155. UNAIDS GA (2016) Update 2016. Geneva, Switzerland

    Google Scholar 

  156. Venet S, Kosco-Vilbois M, Fischer N (2013) Comparing CDRH3 diversity captured from secondary lymphoid organs for the generation of recombinant human antibodies. MAbs 5:690–698. Taylor & Francis

    Article  PubMed  PubMed Central  Google Scholar 

  157. Vogt MR, Dowd KA, Engle M, Tesh RB, Johnson S, Pierson TC, Diamond MS (2011) Poorly neutralizing cross-reactive antibodies against the fusion loop of West Nile virus envelope protein protect in vivo via Fcγ receptor and complement-dependent effector mechanisms. J Virol 85(22):11567–11580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Walker LM, Simek MD, Priddy F, Gach JS, Wagner D, Zwick MB, Phogat SK, Poignard P, Burton DR (2010) A limited number of antibody specificities mediate broad and potent serum neutralization in selected HIV-1 infected individuals. PLoS Pathog 6(8):e1001028

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Wang L, Yu M, Eaton B (1995) Epitope mapping and engineering using phage display technology. Asia-Pac J Mol Biol Biotechnol 3:240–258

    Google Scholar 

  160. Wang H, Yu R, Fang T, Yu T, Chi X, Zhang X, Liu S, Fu L, Yu C, Chen W (2016a) Tetanus neurotoxin neutralizing antibodies screened from a human immune scFv antibody phage display library. Toxins 8(9):266

    Article  PubMed Central  CAS  Google Scholar 

  161. Wang W, Sun X, Li Y, Su J, Ling Z, Zhang T, Wang F, Zhang H, Chen H, Ding J (2016b) Human antibody 3E1 targets the HA stem region of H1N1 and H5N6 influenza A viruses. Nat Commun 7:13577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Wec AZ, Nyakatura EK, Herbert AS, Howell KA, Holtsberg FW, Bakken RR, Mittler E, Christin JR, Shulenin S, Jangra RK (2016) A “Trojan horse” bispecific-antibody strategy for broad protection against ebolaviruses. Science 354(6310):350–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Wec AZ, Herbert AS, Murin CD, Nyakatura EK, Abelson DM, Fels JM, He S, James RM, de La Vega M-A, Zhu W (2017) Antibodies from a human survivor define sites of vulnerability for broad protection against Ebolaviruses. Cell 169(5):878–890. e815

    Article  CAS  PubMed  Google Scholar 

  164. Whittle JR, Zhang R, Khurana S, King LR, Manischewitz J, Golding H, Dormitzer PR, Haynes BF, Walter EB, Moody MA (2011) Broadly neutralizing human antibody that recognizes the receptor-binding pocket of influenza virus hemagglutinin. Proc Natl Acad Sci 108(34):14216–14221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Wilson JA, Hevey M, Bakken R, Guest S, Bray M, Schmaljohn AL, Hart MK (2000) Epitopes involved in antibody-mediated protection from Ebola virus. Science 287(5458):1664–1666

    Article  CAS  PubMed  Google Scholar 

  166. Winter G, Griffiths AD, Hawkins RE, Hoogenboom HR (1994) Making antibodies by phage display technology. Annu Rev Immunol 12(1):433–455

    Article  CAS  PubMed  Google Scholar 

  167. WoÈrn A, PluÈckthun A (2001) Stability engineering of antibody single-chain Fv fragments. J Mol Biol 305(5):989–1010

    Article  CAS  Google Scholar 

  168. Wohlbold TJ, Krammer F (2014) In the shadow of hemagglutinin: a growing interest in influenza viral neuraminidase and its role as a vaccine antigen. Virus 6(6):2465–2494

    Article  CAS  Google Scholar 

  169. Wu J, Zeng X-Q, Zhang H-B, Ni H-Z, Pei L, Zou L-R, Liang L-J, Zhang X, Lin J-Y, Ke C-W (2014) Novel phage display-derived H5N1-specific scFvs with potential use in rapid avian flu diagnosis. J Microbiol Biotechnol 24(5):704–713

    Article  CAS  PubMed  Google Scholar 

  170. Wyrzucki A, Dreyfus C, Kohler I, Steck M, Wilson IA, Hangartner L (2014) Alternative recognition of the conserved stem epitope in influenza A virus hemagglutinin by a VH3-30-encoded heterosubtypic antibody. J Virol 88(12):7083–7092

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Wyrzucki A, Bianchi M, Kohler I, Steck M, Hangartner L (2015) Heterosubtypic antibodies to influenza A virus have limited activity against cell-bound virus but are not impaired by strain-specific serum antibodies. J Virol 89(6):3136–3144

    Article  CAS  PubMed  Google Scholar 

  172. Yip YL, Hawkins NJ, Clark MA, Ward RL (1997) Evaluation of different lymphoid tissue sources for the construction of human immunoglobulin gene libraries. Immunotechnology 3(3):195–203

    Article  CAS  PubMed  Google Scholar 

  173. Yokota T, Milenic DE, Whitlow M, Schlom J (1992) Rapid tumor penetration of a single-chain Fv and comparison with other immunoglobulin forms. Cancer Res 52(12):3402–3408

    CAS  PubMed  Google Scholar 

  174. Yu X, Tsibane T, McGraw PA, House FS, Keefer CJ, Hicar MD, Tumpey TM, Pappas C, Perrone LA, Martinez O (2008) Neutralizing antibodies derived from the B cells of 1918 influenza pandemic survivors. Nature 455(7212):532–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Yu X, Duval M, Gawron M, Posner MR, Cavacini LA (2016) Overcoming the constraints of anti-HIV/CD89 Bispecific antibodies that limit viral inhibition. J Immunol Res 2016:1

    Google Scholar 

  176. Yuan Z, Du M, Chen Y, Dou F (2013) Construction of human Fab library and screening of a single-domain antibody of amyloid-beta 42 oligomers. Neural Regen Res 8(33):3107

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Zanetti M, Capra DJ (2003) Antibodies. CRC Press

    Google Scholar 

  178. Zantow J, Just S, Lagkouvardos I, Kisling S, Dübel S, Lepage P, Clavel T, Hust M (2016) Mining gut microbiome oligopeptides by functional metaproteome display. Sci Rep 6:34337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Zhang Q, Gui M, Niu X, He S, Wang R, Feng Y, Kroeker A, Zuo Y, Wang H, Wang Y (2016a) Potent neutralizing monoclonal antibodies against Ebola virus infection. Sci Rep 6:25856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Zhang S, Kostyuchenko VA, Ng T-S, Lim X-N, Ooi JS, Lambert S, Tan TY, Widman DG, Shi J, Baric RS (2016b) Neutralization mechanism of a highly potent antibody against Zika virus. Nat Commun 7:13679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Zhao H, Fernandez E, Dowd KA, Speer SD, Platt DJ, Gorman MJ, Govero J, Nelson CA, Pierson TC, Diamond MS (2016) Structural basis of Zika virus-specific antibody protection. Cell 166(4):1016–1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support from the Malaysian Ministry of Higher Education through the Higher Institution Centre of Excellence (HICoE) Grant (Grant No. 311/CIPPM/4401005). SKC would like to acknowledge support from USM Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theam Soon Lim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chan, S.K., Lim, T.S. (2017). Immune Human Antibody Libraries for Infectious Diseases. In: Lim, T. (eds) Recombinant Antibodies for Infectious Diseases. Advances in Experimental Medicine and Biology, vol 1053. Springer, Cham. https://doi.org/10.1007/978-3-319-72077-7_4

Download citation

Publish with us

Policies and ethics