Skip to main content

Antibody Phage Display

  • Chapter
  • First Online:
Recombinant Antibodies for Infectious Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1053))

Abstract

Antibody phage display has become an indispensable tool for the discovery and optimization of target-specific monoclonal antibodies suitable for demanding applications including therapeutic reagents. The in vitro nature of the technology enables the rapid and efficient identification of specific binders, as well as greater control over selection parameters that facilitates the isolation of antibodies with unique, desirable functional characteristics. In this chapter, the technological background and the state of the art in the field of antibody phage display is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 189.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams CW, Allison DE, Flagella K, Presta L, Clarke J, Dybdal N, McKeever K, Sliwkowski MX (2006) Humanization of a recombinant monoclonal antibody to produce a therapeutic HER dimerization inhibitor, pertuzumab. Cancer Immunol Immunother 55(6):717–727. https://doi.org/10.1007/s00262-005-0058-x

    Article  CAS  PubMed  Google Scholar 

  2. Andris-Widhopf J, Steinberger P, Fuller R, Rader C, Barbas CF 3rd (2001) Generation of antibody libraries: PCR amplification and assembly of light- and heavy-chain coding sequences. In: Barbas CF 3rd, Burton DR, Scott JK, Silverman GJ (eds) Phage display: a laboratory manual. Cold Spring Harbot Laboratory Press, Cold Spring Harbor

    Google Scholar 

  3. Baca M, Presta LG, O’Connor SJ, Wells JA (1997) Antibody humanization using monovalent phage display. J Biol Chem 272(16):10678–10684

    Article  CAS  PubMed  Google Scholar 

  4. Baek H, Suk KH, Kim YH, Cha S (2002) An improved helper phage system for efficient isolation of specific antibody molecules in phage display. Nucleic Acids Res 30(5):e18

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bai X, Kim J, Kang S, Kim W, Shim H (2015) A novel human scFv library with non-combinatorial synthetic CDR diversity. PLoS One 10(10):e0141045

    Article  PubMed  PubMed Central  Google Scholar 

  6. Baker KP, Edwards BM, Main SH, Choi GH, Wager RE, Halpern WG, Lappin PB, Riccobene T, Abramian D, Sekut L, Sturm B, Poortman C, Minter RR, Dobson CL, Williams E, Carmen S, Smith R, Roschke V, Hilbert DM, Vaughan TJ, Albert VR (2003) Generation and characterization of LymphoStat-B, a human monoclonal antibody that antagonizes the bioactivities of B lymphocyte stimulator. Arthritis Rheum 48(11):3253–3265

    Article  CAS  PubMed  Google Scholar 

  7. Barbas CF 3rd, Kang AS, Lerner RA, Benkovic SJ (1991) Assembly of combinatorial antibody libraries on phage surfaces: the gene III site. Proc Natl Acad Sci U S A 88(18):7978–7982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Barbas CF 3rd, Bain JD, Hoekstra DM, Lerner RA (1992) Semisynthetic combinatorial antibody libraries: a chemical solution to the diversity problem. Proc Natl Acad Sci U S A 89(10):4457–4461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bardoff M, Bohrmann B, Brockhaus M, Huber W, Kretzschmar T, Loehring C, Loetscher H, Nordstedt C, Rothe C (2003) Anti-amyloid beta antibodies and their use. WO Patent 2003070760

    Google Scholar 

  10. Benson J, Carton J, Cunningham M, Orlovsky YI, Rauchenberger R, Sweet R (2006) Human anti-IL-23 antibodies, compositions, methods and uses. WO Patent 2007076524

    Google Scholar 

  11. Berger C, Herrmann T, Lu C, Sheppard K-A, Trifilieff E, Urlinger S (2010) Compositions and methods for increasing muscle growth. WO Patent 2010125003

    Google Scholar 

  12. Boeke JD, Model P, Zinder ND (1982) Effects of bacteriophage f1 gene III protein on the host cell membrane. Mol Gen Genet 186(2):185–192

    Article  CAS  PubMed  Google Scholar 

  13. Bohrmann B, Baumann K, Benz J, Gerber F, Huber W, Knoflach F, Messer J, Oroszlan K, Rauchenberger R, Richter WF, Rothe C, Urban M, Bardroff M, Winter M, Nordstedt C, Loetscher H (2012) Gantenerumab: a novel human anti-Abeta antibody demonstrates sustained cerebral amyloid-beta binding and elicits cell-mediated removal of human amyloid-beta. J Alzheimers Dis 28(1):49–69

    CAS  PubMed  Google Scholar 

  14. Bradbury AR, Sidhu S, Dubel S, McCafferty J (2011) Beyond natural antibodies: the power of in vitro display technologies. Nat Biotechnol 29(3):245–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Branston SD, Stanley EC, Ward JM, Keshavarz-Moore E (2013) Determination of the survival of bacteriophage M13 from chemical and physical challenges to assist in its sustainable bioprocessing. Biotechnol Bioprocess Eng 18(3):560–566

    Article  CAS  Google Scholar 

  16. Carmen S, Jermutus L (2002) Concepts in antibody phage display. Brief Funct Genomic Proteomic 1(2):189–203

    Article  CAS  PubMed  Google Scholar 

  17. Carter P, Presta L, Gorman CM, Ridgway JB, Henner D, Wong WL, Rowland AM, Kotts C, Carver ME, Shepard HM (1992) Humanization of an anti-p185HER2 antibody for human cancer therapy. Proc Natl Acad Sci U S A 89(10):4285–4289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chan CE, Chan AH, Lim AP, Hanson BJ (2011) Comparison of the efficiency of antibody selection from semi-synthetic scFv and non-immune Fab phage display libraries against protein targets for rapid development of diagnostic immunoassays. J Immunol Methods 373(1–2):79–88

    Article  CAS  PubMed  Google Scholar 

  19. Chapman-Smith A, Cronan JE Jr (1999) The enzymatic biotinylation of proteins: a post-translational modification of exceptional specificity. Trends Biochem Sci 24(9):359–363

    Article  CAS  PubMed  Google Scholar 

  20. Charlton KA, Porter AJ (2002) Isolation of anti-hapten specific antibody fragments from combinatorial libraries. Methods Mol Biol 178:159–171

    CAS  PubMed  Google Scholar 

  21. Chen Y, Wiesmann C, Fuh G, Li B, Christinger HW, McKay P, de Vos AM, Lowman HB (1999) Selection and analysis of an optimized anti-VEGF antibody: crystal structure of an affinity-matured Fab in complex with antigen. J Mol Biol 293(4):865–881

    Article  CAS  PubMed  Google Scholar 

  22. Clark M (2000) Antibody humanization: a case of the ‘Emperor’s new clothes’? Immunol Today 21(8):397–402

    Article  CAS  PubMed  Google Scholar 

  23. Dai M, Temirov J, Pesavento E, Kiss C, Velappan N, Pavlik P, Werner JH, Bradbury AR (2008) Using T7 phage display to select GFP-based binders. Protein Eng Des Sel 21(7):413–424

    Article  CAS  PubMed  Google Scholar 

  24. Danner S, Belasco JG (2001) T7 phage display: a novel genetic selection system for cloning RNA-binding proteins from cDNA libraries. Proc Natl Acad Sci U S A 98(23):12954–12959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Davidson A (2010) Targeting BAFF in autoimmunity. Curr Opin Immunol 22(6):732–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. De Groot AS, Knopp PM, Martin W (2005) De-immunization of therapeutic proteins by T-cell epitope modification. Dev Biol 122:171–194

    Google Scholar 

  27. Desplancq D, King DJ, Lawson AD, Mountain A (1994) Multimerization behaviour of single chain Fv variants for the tumour-binding antibody B72.3. Protein Eng 7(8):1027–1033

    Article  CAS  PubMed  Google Scholar 

  28. Edwards BM, Barash SC, Main SH, Choi GH, Minter R, Ullrich S, Williams E, Du Fou L, Wilton J, Albert VR, Ruben SM, Vaughan TJ (2003) The remarkable flexibility of the human antibody repertoire; isolation of over one thousand different antibodies to a single protein, BLyS. J Mol Biol 334(1):103–118

    Article  CAS  PubMed  Google Scholar 

  29. Figini M, Obici L, Mezzanzanica D, Griffiths A, Colnaghi MI, Winter G, Canevari S (1998) Panning phage antibody libraries on cells: isolation of human Fab fragments against ovarian carcinoma using guided selection. Cancer Res 58(5):991–996

    CAS  PubMed  Google Scholar 

  30. Foote J, Eisen HN (1995) Kinetic and affinity limits on antibodies produced during immune responses. Proc Natl Acad Sci U S A 92(5):1254–1256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Frenzel A, Schirrmann T, Hust M (2016) Phage display-derived human antibodies in clinical development and therapy. MAbs 8(7):1177–1194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gao C, Mao S, Lo CH, Wirsching P, Lerner RA, Janda KD (1999) Making artificial antibodies: a format for phage display of combinatorial heterodimeric arrays. Proc Natl Acad Sci U S A 96(11):6025–6030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Graham BS, Ambrosino DM (2015) History of passive antibody administration for prevention and treatment of infectious diseases. Curr Opin HIV AIDS 10(3):129–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Groves M, Lane S, Douthwaite J, Lowne D, Rees DG, Edwards B, Jackson RH (2006) Affinity maturation of phage display antibody populations using ribosome display. J Immunol Methods 313(1–2):129–139. https://doi.org/10.1016/j.jim.2006.04.002

    Article  CAS  PubMed  Google Scholar 

  35. Hoet RM, Cohen EH, Kent RB, Rookey K, Schoonbroodt S, Hogan S, Rem L, Frans N, Daukandt M, Pieters H, van Hegelsom R, Neer NC, Nastri HG, Rondon IJ, Leeds JA, Hufton SE, Huang L, Kashin I, Devlin M, Kuang G, Steukers M, Viswanathan M, Nixon AE, Sexton DJ, Hoogenboom HR, Ladner RC (2005) Generation of high-affinity human antibodies by combining donor-derived and synthetic complementarity-determining-region diversity. Nat Biotechnol 23(3):344–348

    Article  CAS  PubMed  Google Scholar 

  36. Hoogenboom HR, Chames P (2000) Natural and designer binding sites made by phage display technology. Immunol Today 21(8):371–378

    Article  CAS  PubMed  Google Scholar 

  37. Hoogenboom HR, Griffiths AD, Johnson KS, Chiswell DJ, Hudson P, Winter G (1991) Multi-subunit proteins on the surface of filamentous phage: methodologies for displaying antibody (Fab) heavy and light chains. Nucleic Acids Res 19(15):4133–4137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Huse WD, Sastry L, Iverson SA, Kang AS, Alting-Mees M, Burton DR, Benkovic SJ, Lerner RA (1989) Generation of a large combinatorial library of the immunoglobulin repertoire in phage lambda. Science 246(4935):1275–1281

    Article  CAS  PubMed  Google Scholar 

  39. Jespers LS, Roberts A, Mahler SM, Winter G, Hoogenboom HR (1994) Guiding the selection of human antibodies from phage display repertoires to a single epitope of an antigen. Biotechnology (N Y) 12(9):899–903

    CAS  Google Scholar 

  40. Karlsson F, Borrebaeck CA, Nilsson N, Malmborg-Hager AC (2003) The mechanism of bacterial infection by filamentous phages involves molecular interactions between TolA and phage protein 3 domains. J Bacteriol 185(8):2628–2634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Knappik A, Ge L, Honegger A, Pack P, Fischer M, Wellnhofer G, Hoess A, Wolle J, Pluckthun A, Virnekas B (2000) Fully synthetic human combinatorial antibody libraries (HuCAL) based on modular consensus frameworks and CDRs randomized with trinucleotides. J Mol Biol 296(1):57–86

    Article  CAS  PubMed  Google Scholar 

  42. Kohler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256(5517):495–497

    Article  CAS  PubMed  Google Scholar 

  43. Kugler J, Wilke S, Meier D, Tomszak F, Frenzel A, Schirrmann T, Dubel S, Garritsen H, Hock B, Toleikis L, Schutte M, Hust M (2015) Generation and analysis of the improved human HAL9/10 antibody phage display libraries. BMC Biotechnol 15:10

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lach-Trifilieff E, Minetti GC, Sheppard K, Ibebunjo C, Feige JN, Hartmann S, Brachat S, Rivet H, Koelbing C, Morvan F, Hatakeyama S, Glass DJ (2014) An antibody blocking activin type II receptors induces strong skeletal muscle hypertrophy and protects from atrophy. Mol Cell Biol 34(4):606–618

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lee CM, Iorno N, Sierro F, Christ D (2007) Selection of human antibody fragments by phage display. Nat Protoc 2(11):3001–3008. https://doi.org/10.1038/nprot.2007.448

    Article  CAS  PubMed  Google Scholar 

  46. Liu JK (2014) The history of monoclonal antibody development – progress, remaining challenges and future innovations. Ann Med Surg (Lond) 3(4):113–116

    Article  Google Scholar 

  47. Liu M, Zhu Z (2009) Human anti-epidermal growth factor receptor antibody. USA Patent US 7,598,350

    Google Scholar 

  48. Lloyd C, Lowe D, Edwards B, Welsh F, Dilks T, Hardman C, Vaughan T (2009) Modelling the human immune response: performance of a 1011 human antibody repertoire against a broad panel of therapeutically relevant antigens. Protein Eng Des Sel 22(3):159–168

    Article  CAS  PubMed  Google Scholar 

  49. Lonberg N (2005) Human antibodies from transgenic animals. Nat Biotechnol 23(9):1117–1125. https://doi.org/10.1038/nbt1135

    Article  CAS  PubMed  Google Scholar 

  50. Lonberg N (2008) Fully human antibodies from transgenic mouse and phage display platforms. Curr Opin Immunol 20(4):450–459

    Article  CAS  PubMed  Google Scholar 

  51. Lonberg N (2008) Human monoclonal antibodies from transgenic mice. Handb Exp Pharmacol 181:69–97

    Article  CAS  Google Scholar 

  52. Loset GA, Roos N, Bogen B, Sandlie I (2011) Expanding the versatility of phage display II: improved affinity selection of folded domains on protein VII and IX of the filamentous phage. PLoS One 6(2):e17433

    Article  PubMed  PubMed Central  Google Scholar 

  53. Lu D, Jimenez X, Zhang H, Bohlen P, Witte L, Zhu Z (2002) Selection of high affinity human neutralizing antibodies to VEGFR2 from a large antibody phage display library for antiangiogenesis therapy. Int J Cancer Journal International du Cancer 97(3):393–399

    Article  CAS  PubMed  Google Scholar 

  54. Lu D, Shen J, Vil MD, Zhang H, Jimenez X, Bohlen P, Witte L, Zhu Z (2003) Tailoring in vitro selection for a picomolar affinity human antibody directed against vascular endothelial growth factor receptor 2 for enhanced neutralizing activity. J Biol Chem 278(44):43496–43507. https://doi.org/10.1074/jbc.M307742200

    Article  CAS  PubMed  Google Scholar 

  55. Marks JD, Hoogenboom HR, Bonnert TP, McCafferty J, Griffiths AD, Winter G (1991) By-passing immunization. Human antibodies from V-gene libraries displayed on phage. J Mol Biol 222(3):581–597

    Article  CAS  PubMed  Google Scholar 

  56. Mazumdar S (2009) Raxibacumab. MAbs 1(6):531–538

    Article  PubMed  PubMed Central  Google Scholar 

  57. Meulemans EV, Slobbe R, Wasterval P, Ramaekers FC, van Eys GJ (1994) Selection of phage-displayed antibodies specific for a cytoskeletal antigen by competitive elution with a monoclonal antibody. J Mol Biol 244(4):353–360

    Article  CAS  PubMed  Google Scholar 

  58. Monjezi R, Tey BT, Sieo CC, Tan WS (2010) Purification of bacteriophage M13 by anion exchange chromatography. J Chromatogr B Anal Technol Biomed Life Sci 878(21):1855–1859

    Article  CAS  Google Scholar 

  59. Monk PD, Jermutus L, Minter RR, Shorrock CP (2004) Human antibody molecules for IL-13. WO Patent 2005007699

    Google Scholar 

  60. Muller YA, Chen Y, Christinger HW, Li B, Cunningham BC, Lowman HB, de Vos AM (1998) VEGF and the Fab fragment of a humanized neutralizing antibody: crystal structure of the complex at 2.4 A resolution and mutational analysis of the interface. Structure 6(9):1153–1167

    Article  CAS  PubMed  Google Scholar 

  61. Nelson AL, Dhimolea E, Reichert JM (2010) Development trends for human monoclonal antibody therapeutics. Nat Rev Drug Discov 9(10):767–774

    Article  CAS  PubMed  Google Scholar 

  62. Nissim A, Chernajovsky Y (2008) Historical development of monoclonal antibody therapeutics. Handb Exp Pharmacol 181:3–18

    Article  CAS  Google Scholar 

  63. Nissim A, Hoogenboom HR, Tomlinson IM, Flynn G, Midgley C, Lane D, Winter G (1994) Antibody fragments from a ‘single pot’ phage display library as immunochemical reagents. EMBO J 13(3):692–698

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Perrotte P, Matsumoto T, Inoue K, Kuniyasu H, Eve BY, Hicklin DJ, Radinsky R, Dinney CP (1999) Anti-epidermal growth factor receptor antibody C225 inhibits angiogenesis in human transitional cell carcinoma growing orthotopically in nude mice. Clin Cancer Res 5(2):257–265

    CAS  PubMed  Google Scholar 

  65. Prassler J, Thiel S, Pracht C, Polzer A, Peters S, Bauer M, Norenberg S, Stark Y, Kolln J, Popp A, Urlinger S, Enzelberger M (2011) HuCAL PLATINUM, a synthetic Fab library optimized for sequence diversity and superior performance in mammalian expression systems. J Mol Biol 413(1):261–278

    Article  CAS  PubMed  Google Scholar 

  66. Rader C, Cheresh DA, Barbas CF 3rd (1998) A phage display approach for rapid antibody humanization: designed combinatorial V gene libraries. Proc Natl Acad Sci U S A 95(15):8910–8915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Rader C, Steinberger P, Barbas CF 3rd (2001) Selection from antibody libraries. In: Barbas CF 3rd, Burton DR, Scott JK, Silverman GJ (eds) Phage display: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  68. Rakonjac J, Bennett NJ, Spagnuolo J, Gagic D, Russel M (2011) Filamentous bacteriophage: biology, phage display and nanotechnology applications. Curr Issues Mol Biol 13(2):51–76

    CAS  PubMed  Google Scholar 

  69. Rondot S, Koch J, Breitling F, Dubel S (2001) A helper phage to improve single-chain antibody presentation in phage display. Nat Biotechnol 19(1):75–78

    Article  CAS  PubMed  Google Scholar 

  70. Rosen CA, Laird MW, Gentz RL (2011) Antibodies against protective antigen. U.S.A. patent US 7,906,119 B1

    Google Scholar 

  71. Rothe C, Urlinger S, Lohning C, Prassler J, Stark Y, Jager U, Hubner B, Bardroff M, Pradel I, Boss M, Bittlingmaier R, Bataa T, Frisch C, Brocks B, Honegger A, Urban M (2008) The human combinatorial antibody library HuCAL GOLD combines diversification of all six CDRs according to the natural immune system with a novel display method for efficient selection of high-affinity antibodies. J Mol Biol 376(4):1182–1200

    Article  CAS  PubMed  Google Scholar 

  72. Schwimmer LJ, Huang B, Giang H, Cotter RL, Chemla-Vogel DS, Dy FV, Tam EM, Zhang F, Toy P, Bohmann DJ, Watson SR, Beaber JW, Reddy N, Kuan HF, Bedinger DH, Rondon IJ (2013) Discovery of diverse and functional antibodies from large human repertoire antibody libraries. J Immunol Methods 391(1–2):60–71

    Article  CAS  PubMed  Google Scholar 

  73. Scott JK, Barbas CF 3rd (2001) Phage display vectors. In: Barbas CF 3rd, Burton DR, Scott JK, Silverman GJ (eds) Phage display: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  74. Shi L, Wheeler JC, Sweet RW, Lu J, Luo J, Tornetta M, Whitaker B, Reddy R, Brittingham R, Borozdina L, Chen Q, Amegadzie B, Knight DM, Almagro JC, Tsui P (2010) De novo selection of high-affinity antibodies from synthetic fab libraries displayed on phage as pIX fusion proteins. J Mol Biol 397(2):385–396

    Article  CAS  PubMed  Google Scholar 

  75. Shim H (2016) Therapeutic antibodies by phage display. Curr Pharm Des 22:6538–6559

    Article  CAS  PubMed  Google Scholar 

  76. Siegel DL, Chang TY, Russell SL, Bunya VY (1997) Isolation of cell surface-specific human monoclonal antibodies using phage display and magnetically-activated cell sorting: applications in immunohematology. J Immunol Methods 206(1–2):73–85

    Article  CAS  PubMed  Google Scholar 

  77. Singh AD, Parmar S (2015) Ramucirumab (Cyramza): a breakthrough treatment for gastric cancer. P T 40(7):430–468

    PubMed  PubMed Central  Google Scholar 

  78. Smith SL (1996) Ten years of Orthoclone OKT3 (muromonab-CD3): a review. J Transpl Coord 6(3):109–119. quiz 120-101

    Article  CAS  PubMed  Google Scholar 

  79. Soderlind E, Strandberg L, Jirholt P, Kobayashi N, Alexeiva V, Aberg AM, Nilsson A, Jansson B, Ohlin M, Wingren C, Danielsson L, Carlsson R, Borrebaeck CA (2000) Recombining germline-derived CDR sequences for creating diverse single-framework antibody libraries. Nat Biotechnol 18(8):852–856

    Article  CAS  PubMed  Google Scholar 

  80. Soltes G, Barker H, Marmai K, Pun E, Yuen A, Wiersma EJ (2003) A new helper phage and phagemid vector system improves viral display of antibody fab fragments and avoids propagation of insert-less virions. J Immunol Methods 274(1–2):233–244

    Article  CAS  PubMed  Google Scholar 

  81. Sullivan BM, Simon KD, Nanda SKW, Pocius J, Scholz WK (2001) Assay development in high density MicroWell® plates: use of well geometries, format, surface modification and optical properties to achieve optimal assay performance. J Lab Autom 6(2):47–52

    Article  CAS  Google Scholar 

  82. Tang Y, Jiang N, Parakh C, Hilvert D (1996) Selection of linkers for a catalytic single-chain antibody using phage display technology. J Biol Chem 271(26):15682–15686

    Article  CAS  PubMed  Google Scholar 

  83. Tiller T, Schuster I, Deppe D, Siegers K, Strohner R, Herrmann T, Berenguer M, Poujol D, Stehle J, Stark Y, Hessling M, Daubert D, Felderer K, Kaden S, Kolln J, Enzelberger M, Urlinger S (2013) A fully synthetic human Fab antibody library based on fixed VH/VL framework pairings with favorable biophysical properties. MAbs 5(3):445–470

    Article  PubMed  PubMed Central  Google Scholar 

  84. USFDA News Release (2015) FDA approves Portrazza to treat advanced squamous non-small cell lungcancer. Available at: https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm474131.htm

  85. Van den Brulle J, Fischer M, Langmann T, Horn G, Waldmann T, Arnold S, Fuhrmann M, Schatz O, O’Connell T, O’Connell D, Auckenthaler A, Schwer H (2008) A novel solid phase technology for high-throughput gene synthesis. BioTechniques 45(3):340–343

    Article  PubMed  Google Scholar 

  86. Vaughan TJ, Williams AJ, Pritchard K, Osbourn JK, Pope AR, Earnshaw JC, McCafferty J, Hodits RA, Wilton J, Johnson KS (1996) Human antibodies with sub-nanomolar affinities isolated from a large non-immunized phage display library. Nat Biotechnol 14(3):309–314

    Article  CAS  PubMed  Google Scholar 

  87. Virnekas B, Ge L, Pluckthun A, Schneider KC, Wellnhofer G, Moroney SE (1994) Trinucleotide phosphoramidites: ideal reagents for the synthesis of mixed oligonucleotides for random mutagenesis. Nucleic Acids Res 22(25):5600–5607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Watters JM, Telleman P, Junghans RP (1997) An optimized method for cell-based phage display panning. Immunotechnology 3(1):21–29

    Article  CAS  PubMed  Google Scholar 

  89. Webster R (2001) Filamentous phage biology. In: Barbas CF 3rd, Burton DR, Scott JK, Silverman GJ (eds) Phage display: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  90. Worn A, Pluckthun A (2001) Stability engineering of antibody single-chain Fv fragments. J Mol Biol 305(5):989–1010

    Article  CAS  PubMed  Google Scholar 

  91. Yang HY, Kang KJ, Chung JE, Shim H (2009) Construction of a large synthetic human scFv library with six diversified CDRs and high functional diversity. Mol Cells 27(2):225–235

    Article  CAS  PubMed  Google Scholar 

  92. Zahnd C, Sarkar CA, Pluckthun A (2010) Computational analysis of off-rate selection experiments to optimize affinity maturation by directed evolution. Protein Eng Des Sel 23(4):175–184

    Article  CAS  PubMed  Google Scholar 

  93. Zakharova MY, Kozyr AV, Ignatova AN, Vinnikov IA, Shemyakin IG, Kolesnikov AV (2005) Purification of filamentous bacteriophage fofr phage display using size-exclusion chromatography. BioTechniqus 38(2):194–198

    Article  CAS  Google Scholar 

  94. Zhai W, Glanville J, Fuhrmann M, Mei L, Ni I, Sundar PD, Van Blarcom T, Abdiche Y, Lindquist K, Strohner R, Telman D, Cappuccilli G, Finlay WJ, Van den Brulle J, Cox DR, Pons J, Rajpal A (2011) Synthetic antibodies designed on natural sequence landscapes. J Mol Biol 412(1):55–71

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyunbo Shim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shim, H. (2017). Antibody Phage Display. In: Lim, T. (eds) Recombinant Antibodies for Infectious Diseases. Advances in Experimental Medicine and Biology, vol 1053. Springer, Cham. https://doi.org/10.1007/978-3-319-72077-7_2

Download citation

Publish with us

Policies and ethics