Skip to main content

Safety and General Considerations for the Use of Antibodies in Infectious Diseases

  • Chapter
  • First Online:
Recombinant Antibodies for Infectious Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1053))

Abstract

Monocolonal antibodies are valuable potential new tools for meeting unmet needs in treating infectious dieseases and to provide alternatives and supplements to antibiotics in these times of growing resistance. Especially when considering the ability to screen for antibodies reacting to very diverse target antigens and the ability to design and engineer them to work specifically to hit and overcome their strategies, like toxins and their hiding in specific cells to evade the immuneresponse and their special features enabling killing of the infectious agents and or the cells harbouring them. Antibodies are generally very safe and adverse effects of treatments with therapeutic antibodies are usually related to exaggeration of the intended pharmacology. In this chapter general safety considerations for the use of antibodies is reviewed and the general procedures for nonclinical testing to support their clinical development. Special considerations for anti-infective mAb treatments are provided including the special features that makes nonclinical safety programs for anti-infective mAbs much more simple and restricted. However at a cost since only limited information for clinical safety and modeling can be derived from such programs. Then strategies for optimally designing antibodies are discussed including the use of combination of antibodies. Finally ways to facilitate development of more than the currently only three approved mAb based treatments are discussed with a special focus on high costs and high price and how collaboration and new strategies for development in emerging markets can be a driver for this.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 189.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Behring EA, Kitasato S (1890) Ueber das zustandekommen der diptherie-immunität und der tetanus-immunität bei thieren. Deutch Med Woch 49:1113–1114

    Google Scholar 

  2. Klemperer G, Klemperer F (1891) Versuche uber immunisirung und heilung bei der pneumokokkeninfection. Berlin Klin Wochenschr 28:833–835

    Google Scholar 

  3. Flexner S, Jobling JW (1908) Serum treatment of epidemic cerebro-spinal meningitis. J Exp Med 10:141–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Köhler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497

    Article  PubMed  Google Scholar 

  5. Casadevall A, Dadachova E, Pirofski LA (2004) Passive antibody therapy for infectious diseases. Nat Rev Microbiol 2:695–703

    Article  CAS  PubMed  Google Scholar 

  6. Chatenoud L, Bluestone JA (2007) CD3-specific antibodies: a portal to the treatment of autoimmunity. Nat Rev Immunol 7(8):S. 622–S. 632. PMID 17641665

    Article  Google Scholar 

  7. Baldo BA (2016) Safety of biologics therapies. Monoclonal antibodies, cytokines, fusion proteins, hormones, enzymes, coagulation proteins, vaccines, botulinum toxins. © Springer International Publishing Switzerland 2016, ISBN:978-3-319-30470-0; 29–214

    Google Scholar 

  8. Cai HH (2016) Therapeutic monoclonal antibodies approved by FDA in 2015. MOJ Immunol 3(2):00087

    Article  Google Scholar 

  9. Cai HH (2017) Therapeutic monoclonal antibodies approved by FDA in 2016. MOJ Immunol 5(1):00145

    Article  Google Scholar 

  10. Smith GP (1985). Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science; 228:1315–7; PMID: 4001944. https://doi.org/10.1126/science.4001944

  11. Chan CEZ, Angeline LPC, MacAry PA, Hanson BJ (2014) The role of phage display in therapeutic antibody discovery. Int Immunol. https://doi.org/10.1093/intimm/dxu082

  12. Ouisse L-H, Gautreau-Rolland L, Devilder M-C, et al (2017) Antigen-specific single B cell sorting and expression-cloning from immunoglobulin humanized rats: a rapid and versatile method for the generation of high affinity and discriminative human monoclonal antibodies. BMC https://doi.org/10.1186/s12896-016-0322-5Biotechnol 17:3. https://doi.org/10.1186/s12896-016-0322-5

  13. Murphy AJ, Macdonald LE, Stevens S, Karow M, Dore AT, Pobursky K, Huang TT, Poueymirou WT, Esau L, Meola M, Mikulka W, Krueger P, Fairhurst J, Valenzuela DM, Papadopoulos N, Yancopoulos GD (2014) Mice with megabase humanization of their immunoglobulin genes generate antibodies as efficiently as normal mice. Proc Natl Acad Sci U S A 111(14):5153–5158. https://doi.org/10.1186/s12896-016-0322-5. Epub 2014 Mar 25. PubMed PMID: 24706856; PubMed Central PMCID: PMC3986188

  14. Leila Rahbarnia L, Farajnia S, Hossein Babaei H, Majidi J, Veisi K, Ahmadzadeh V, Akbari B (2017) Evolution of phage display technology: from discovery to application. J Drug Target 25(3):216–224. https://doi.org/10.1080/1061186X.2016.1258570

    Article  PubMed  Google Scholar 

  15. Breker OH, Sandlie I (2003) Therapeutic antibodies for human diseases at the dawn of the twenty-first century. Nat Rev Drug Discov 2:52–62

    Article  Google Scholar 

  16. Hansel TT, Kropshofer H, Singer T, Mitchell JA, George AJT (2010) The safety and side effects of monoclonal antibodies. Nat Rev Drug Discov 9:325–338

    Article  CAS  PubMed  Google Scholar 

  17. Stebbings R, Findlay L, Edwards C, Eastwood D, Bird C, North D, Mistry Y, Paula D, Liefooghe E, Cludts I, Fox B, Tarrant G, Robinson J, Meager T, Dolman C, Thorpe SJ, Bristow A, Wadwa M, Thorpe R, Poole S (2007) “Cytokine Storm” in the Phase I Trial of monoclonal antibody TGN1412: better understanding the causes to improve preclinical testing of immunotherapeutics. J Immunol 179:3325–3331

    Article  CAS  PubMed  Google Scholar 

  18. Eastwood D, Bird C, Dilger P, Hockley J, FindlayL TSJ, Wadwa M, Thorpe R, Stebbings R (2013) Severity of the TGN1412 trial disaster cytokine storm correlated with IL-2release. Br J Clin Pharmacol 76(2):299–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. WHO/ PHARM S/NOM 1570 (1997) Guidelines On the use of international Nonproprietary Names (INNs) For Pharmaceutical Substances

    Google Scholar 

  20. World Heath Organisation Recommended INN: List 77 (2017) International Nonproprietary Names for Pharmaceutical Substances. WHO Drug Inform 31(1)

    Google Scholar 

  21. Eastwood D, Findlay L, Pool S, Bird C, Wadwa M, Moore M, Burns C, Thorpe R, Stebbings R (2010) Monoclonal antibody TGN1412 trial failure explained by species differences in CD28 expression on CD4+ effector memory T-cells. Br J Pharmacol 161(3):512–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stebbings R, Eastwood D, Pool S, Thorpe R (2013) After TGN1412: recent developments in cytokine release assays. J Immunotoxicol 10(1):75–82

    Article  CAS  PubMed  Google Scholar 

  23. Finco D, Grimalsi C, Fort M, Walker M, Kiessling A, Wolf B, Salcedo T, Faggioni R, Schneider A, Ibraghimov A, Scesney S, Serna D, Prell R, Stebbings R, Narayanan PK (2014) Cytokine release assays: current practices and future directions. Cytokine 66(2):143–155

    Article  CAS  PubMed  Google Scholar 

  24. Duff GD Expert Scientific Group on phase one clinical trials. Final report 30th November 2006. TSO@Blackwell. Online www.tsoshop.co.uk. ISBN-10 0 11 703722 2

  25. European Medicines Agency.1 September 2007. Guideline on strategies to identify and mitigate risks for first in human clinical trials with investigational medicinal products. EMEA/CHMP/SWP/28367/07

    Google Scholar 

  26. Flipse J, Diosa-Toro MA, Hoornweg TE, van de Pol DPI, Urcuqui-Inchima S, Smit JM (2016) Antobody-dependent enhancement of dengue virus infection in primary human macrophages; balancing higher fusion against antiviral responses. Sci Rep 6:29201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chan KR, Ong EZ, Mok DZL, Ooi EE (2015) Fc receptors and their influence on efficacy of therapeutic antibodies for treatment of viral diseases. Expert Rev Anti Infect Ther 13(11):1351–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mirabet M, Barrabes JA, Quiroga A, Garcia-Dorado D (2008) Platelet pro-aggregatory effects of CD40L monoclonal antibody. Mol Immunol 45(4):937–944

    Article  CAS  PubMed  Google Scholar 

  29. Lacouture M (2006) Mechanisms of cutaneous toxicities to EGFR inhibitors. Nat Rev Cancer 6:803–812

    Article  CAS  PubMed  Google Scholar 

  30. Wolach O, Bairey O, Lahav M (2010) Late-onset neutropenia after rituximab treatment – case series and comprehensive review of the literature. Medicine 89(5):308–318

    Article  PubMed  Google Scholar 

  31. Leach MW, Halpern WG, Johnson CW, Roiko JL, MacLachlan TK, Chan CM, Galbreath EJ, Ndifor AM, Blasset DL, Polack E, Cavagnaro JA (2010) Use of tissue cross-reactivity studies in the development of antibody-based biopharmaceuticals: history, experience, methodology, and future directions. Toxicol Pathol 38(7):1138–1166

    Article  PubMed  Google Scholar 

  32. Brennan FR, Dill Morton L, Spindeldreher S, Kiessling A, Allenspach R, Hey A, Muller PY, Frings W, Sims J (2010) Safety and immunotoxicity assessment of immunomodulatory monoclonal antibodies. mAbs 2(3):233–255

    Article  PubMed  PubMed Central  Google Scholar 

  33. DeSesso JM, Williams AL, Ahuja A, Bowman CJ, Hurtt ME (2012) The Placenta, transfer of immunoglobulins, and safety assessment of biopharmaceuticals in pregnancy. Crit Rev Toxicol 42(3):185–210

    Article  CAS  PubMed  Google Scholar 

  34. Pentsuk N, van der Laan JW (2009) An interspecies comparison of placental antibody transfer: new insights into developmental toxicity testing of monoclonal antibodies. Birth Defects Res B Dev Reprod Toxicol 86(4):328–244

    Article  CAS  PubMed  Google Scholar 

  35. Lansita AL, Mounho-Zamora B (2015) The development of therapeutic monoclonal antibodies: overview of the nonclinical safety assessment. Curr Pain Headache Rep 19(2):1–9

    Article  Google Scholar 

  36. Jarvis P, Srivastav S, Vogelwedde E, Stewart J, Mitchard T, Weinbauer GF (2010) The cynomolgus monkey as a model for developmental toxicity studies: variability of pregnancy losses, statistical power estimates and group size considerations. Birth Defects Research Part B 89:175–187

    CAS  PubMed  Google Scholar 

  37. Aitken AE, Richardson TA, Morgan ET (2006) Regulation of drug-metabolizing enzymes and transporters in inflammation. Annu Rev Pharmacol toxicol 46:123–149

    Article  CAS  PubMed  Google Scholar 

  38. Morgan ET (2009) Impact of infectious and inflammatory disease on cytochrome P450-mediated drug metabolism and pharmacokinetics. Clin Pharmacol Ther 85(4):434–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lazar GA, Dang W, Karki S, Vafa O, Peng JS, Hyun L, Chan C, Chung HS, Eivazi A, Yoder SC (2006) Engineered antibody Fc variants with enhanced effector function. Proc Natl Acad Sci USA 103:4005–4010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shields RL, Namenuk AK, Hong K, Meng YG, Rae J, Briggs J, Xie D, Lai J, Stadlen A, Li B (2001) High resolution mapping of the binding site on human IgG1 for FcγRI, FcγRII, FcγRIII, and FcRn and design of IgG1 variants with improved binding to the FcγR. J Biol Chem 276:6591–6604

    Article  CAS  PubMed  Google Scholar 

  41. Stewart R, Thom G, Levens M, Güler-Gane G, Holgate R, Rudd PM, Webster C, Jermutus L, Lund J (2011) A variant human IgG1-Fc mediates improved ADCC. Protein Eng Des Sel 24:671–678

    Article  CAS  PubMed  Google Scholar 

  42. Niwa R, Hatanaka S, Shoji-Hosaka E, Sakurada M, Kobayashi Y, Uehara A, Yokoi H, Nakamura K, Shitara K (2004) Enhancement of the antibody-dependent cellular cytotoxicity of low-fucose IgG1 is independent of Fc-gammaRIIIa functional polymorphism. Clin Cancer Res 10:6248–6255

    Article  CAS  PubMed  Google Scholar 

  43. Hezareh M, Hessell AJ, Jensen RC, van de Winkel JGJ, Parren PWHI (2001) Effector function activities of a panel of mutants of a broadly neutralizing antibody against human immunodeficiency virus type 1. J Virol 75:12161–12168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hessell AJ, Hangartner L, Hunter M, Havenith CD, Beursken FJ, Bakker JM, Lanigan CM, Landucci G, Forthal DN, Parren PW, Marx PA, Burton DR (2007) Fc receptor but not complement binding is important in antibody protection against HIV. Nature 449(7158):101–104

    Article  CAS  PubMed  Google Scholar 

  45. Dall’Acqua WF, Kiener PA, Wu H (2006) Properties of human IgG1s engineered for enhanced binding to the neonatal Fc receptor (FcRn). J Biol Chem 281:23514–23524

    Article  PubMed  Google Scholar 

  46. Bregenholt S, Jensen A, Lantto J, Hyldig S, Haurum J (2006) Recombinant human polyclonal antibodies: a new class of therapeutic antibodies against viral infections. Curr Pharm Des 12:2007–2015

    Article  CAS  PubMed  Google Scholar 

  47. Flego M, Ascione A, Cianfriglia M, Vella S (2013) Clinical development of monoclonal antibody-based therapy drugs in HIV and HCV diseases. BMC Med 11:1–17

    Article  Google Scholar 

  48. de Kruif J, Bakker ABH, Marissen WE, Arjen Kramer R, Throsby M, Rupprecht CE, Goudsmit J (2007) A human monoclonal antibody cocktail as a novel component of rabies post-exposure prophylaxis. Annu Rev Med 50:359–368

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Seidelin Hey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hey, A.S. (2017). Safety and General Considerations for the Use of Antibodies in Infectious Diseases. In: Lim, T. (eds) Recombinant Antibodies for Infectious Diseases. Advances in Experimental Medicine and Biology, vol 1053. Springer, Cham. https://doi.org/10.1007/978-3-319-72077-7_13

Download citation

Publish with us

Policies and ethics