Skip to main content

Filamentous Phage: Structure and Biology

  • Chapter
  • First Online:
Recombinant Antibodies for Infectious Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1053))

Abstract

Ff filamentous phage (fd, M13 and f1) of Escherichia coli have been the workhorse of phage display technology for the past 30 years. Dominance of Ff over other bacteriophage in display technology stems from the titres that are about 100-fold higher than any other known phage, efficacious transformation ensuring large library size and superior stability of the virion at high temperatures, detergents and pH extremes, allowing broad range of biopanning conditions in screening phage display libraries. Due to the excellent understanding of infection and assembly requirements, Ff phage have also been at the core of phage-assisted continual protein evolution strategies (PACE). This chapter will give an overview of the Ff filamentous phage structure and biology, emphasizing those properties of the Ff phage life cycle and virion that are pertinent to phage display applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 189.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22(2):195–201

    Article  CAS  PubMed  Google Scholar 

  2. Barbas CF 3rd, Kang AS, Lerner RA, Benkovic SJ (1991) Assembly of combinatorial antibody libraries on phage surfaces: the gene III site. Proc Natl Acad Sci U S A 88(18):7978–7982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Barbas CF, Burton DR, Scott JK, Silverman GJ (2004) Phage display: a laboratory manual. CSHL Press, Cold Spring Harbor

    Google Scholar 

  4. Beghetto E, Gargano N (2011) Lambda-display: a powerful tool for antigen discovery. Molecules 16(4):3089–3105

    Article  CAS  PubMed  Google Scholar 

  5. Bennett NJ, Gagic D, Sutherland-Smith AJ, Rakonjac J (2011) Characterization of a dual-function domain that mediates membrane insertion and excision of Ff filamentous bacteriophage. J Mol Biol 411(5):972–985

    Article  CAS  PubMed  Google Scholar 

  6. Bennett NJ, Rakonjac J (2006) Unlocking of the filamentous bacteriophage virion during infection is mediated by the C domain of pIII. J Mol Biol 356(2):266–273

    Article  CAS  PubMed  Google Scholar 

  7. Bernard JM, Francis MB (2014) Chemical strategies for the covalent modification of filamentous phage. Front Microbiol 5:734. https://doi.org/10.3389/fmicb.2014.00734

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bille E, Zahar JR, Perrin A, Morelle S, Kriz P, Jolley KA, Maiden MC, Dervin C, Nassif X, Tinsley CR (2005) A chromosomally integrated bacteriophage in invasive meningococci. J Exp Med 201(12):1905–1913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Boeke JD, Model P (1982) A prokaryotic membrane anchor sequence: carboxyl terminus of bacteriophage f1 gene III protein retains it in the membrane. Proc Natl Acad Sci U S A 79(17):5200–5204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Boeke JD, Model P, Zinder ND (1982) Effects of bacteriophage f1 gene III protein on the host cell membrane. Mol Gen Genet 186(2):185–192

    Article  CAS  PubMed  Google Scholar 

  11. Bradbury AR, Marks JD (2004) Antibodies from phage antibody libraries. J Immunol Methods 290(1–2):29–49

    Article  CAS  PubMed  Google Scholar 

  12. Branston S, Stanley E, Ward J, Keshavarz-Moore E (2011) Study of robustness of filamentous bacteriophages for industrial applications. Biotechnol Bioeng 108(6):1468–1472

    Article  CAS  PubMed  Google Scholar 

  13. Branston SD, Stanley EC, Ward JM, Keshavarz-Moore E (2013) Determination of the survival of bacteriophage M13 from chemical and physical challenges to assist in its sustainable bioprocessing. Biotechnol Bioprocess Eng 18(3):560–566

    Article  CAS  Google Scholar 

  14. Brissette JL, Russel M, Weiner L, Model P (1990) Phage shock protein, a stress protein of Escherichia coli. Proc Natl Acad Sci U S A 87(3):862–866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Brodel AK, Jaramillo A, Isalan M (2016) Engineering orthogonal dual transcription factors for multi-input synthetic promoters. Nat Commun 7:13858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cao BR, Yang MY, Mao CB (2016) Phage as a genetically modifiable supramacromolecule in chemistry, materials and medicine. Acc Chem Res 49(6):1111–1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cascales E, Buchanan SK, Duche D, Kleanthous C, Lloubes R, Postle K, Riley M, Slatin S, Cavard D (2007) Colicin biology. Microbiol Mol Biol Rev 71(1):158–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chamberlain BK, Webster RE (1976) Lipid-protein interactions in Escherichia coli. Membrane-associated f1 bacteriophage coat protein and phospholipid metabolism. J Biol Chem 251(24):7739–7745

    CAS  PubMed  Google Scholar 

  19. Chamberlain BK, Webster RE (1978) Effect of membrane-associated f1 bacteriophage coat protein upon the activity of Escherichia coli phosphatidylserine synthetase. J Bacteriol 135(3):883–887

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Chasteen L, Ayriss J, Pavlik P, Bradbury AR (2006) Eliminating helper phage from phage display. Nucleic Acids Res 34(21):e145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Choe S, Bennett MJ, Fujii G, Curmi PM, Kantardjieff KA, Collier RJ, Eisenberg D (1992) The crystal structure of diphtheria toxin. Nature 357(6375):216–222

    Article  CAS  PubMed  Google Scholar 

  22. Chung WJ, Lee DY, Yoo SY (2014) Chemical modulation of M13 bacteriophage and its functional opportunities for nanomedicine. Int J Nanomedicine 9:5825–5836

    PubMed  PubMed Central  Google Scholar 

  23. Chung WJ, Oh JW, Kwak K, Lee BY, Meyer J, Wang E, Hexemer A, Lee SW (2011) Biomimetic self-templating supramolecular structures. Nature 478(7369):364–368

    Article  CAS  PubMed  Google Scholar 

  24. Ciric M, Moon CD, Leahy SC, Creevey CJ, Altermann E, Attwood GT, Rakonjac J, Gagic D (2014) Metasecretome-selective phage display approach for mining the functional potential of a rumen microbial community. BMC Genomics 15:356

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Clack BA, Gray DM (1992) Flow linear dichroism spectra of 4 filamentous bacteriophages – DNA and coat protein contributions. Biopolymers 32(7):795–810

    Article  CAS  PubMed  Google Scholar 

  26. Clarke M, Maddera L, Harris RL, Silverman PM (2008) F-pili dynamics by live-cell imaging. Proc Natl Acad Sci U S A 105(46):17978–17981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Click EM, Webster RE (1997) Filamentous phage infection: required interactions with the TolA protein. J Bacteriol 179(20):6464–6471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Click EM, Webster RE (1998) The TolQRA proteins are required for membrane insertion of the major capsid protein of the filamentous phage f1 during infection. J Bacteriol 180(7):1723–1728

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Craig L, Li J (2008) Type IV pili: paradoxes in form and function. Curr Opin Struct Biol 18(2):267–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Daefler S, Guilvout I, Hardie KR, Pugsley AP, Russel M (1997) The C-terminal domain of the secretin PulD contains the binding site for its cognate chaperone, PulS, and confers PulS dependence on plV(f1) function. Mol Microbiol 24(3):465–475

    Article  CAS  PubMed  Google Scholar 

  31. Darwin AJ (2005) Genome-wide screens to identify genes of human pathogenic Yersinia species that are expressed during host infection. Curr Issues Mol Biol 7(2):135–149

    CAS  PubMed  Google Scholar 

  32. Das B (2014) Mechanistic insights into filamentous phage integration in Vibrio cholerae. Front Microbiol 5:650. https://doi.org/10.3389/fmicb.2014.00650

    PubMed  PubMed Central  Google Scholar 

  33. Davis NG, Boeke JD, Model P (1985) Fine structure of a membrane anchor domain. J Mol Biol 181(1):111–121

    Article  CAS  PubMed  Google Scholar 

  34. Davis NG, Model P (1985) An artificial anchor domain: hydrophobicity suffices to stop transfer. Cell 41(2):607–614

    Article  CAS  PubMed  Google Scholar 

  35. Day, L. A. (2011). Family Inoviridae. Virus taxonomy: classification and nomenclature of viruses: ninth report of the international committee on taxonomy of viruses. A. M. Q. King, M. J. Adams, E. B. Carstens and E. J. Lefkowitz. San Diego, Elsevier Academic Press: 375-384

    Google Scholar 

  36. Day LA, Marzec CJ, Reisberg SA, Casadevall A (1988) DNA packing in filamentous bacteriophages. Annu Rev Biophys Biophys Chem 17:509–539

    Article  CAS  PubMed  Google Scholar 

  37. DeLano WL (2006) The PyMOL Molecular Graphics System, from http://www.pymol.org

  38. Deng LW, Perham RN (2002) Delineating the site of interaction on the pIII protein of filamentous bacteriophage fd with the F-pilus of Escherichia coli. J Mol Biol 319(3):603–614

    Article  CAS  PubMed  Google Scholar 

  39. Derda R, Tang SK, Li SC, Ng S, Matochko W, Jafari MR (2011) Diversity of phage-displayed libraries of peptides during panning and amplification. Molecules 16(2):1776–1803

    Article  CAS  PubMed  Google Scholar 

  40. Dogic Z (2016) Filamentous phages as a model system in soft matter physics. Front Microbiol 7:1013. https://doi.org/10.3389/fmicb.2016.01013

    Article  PubMed  PubMed Central  Google Scholar 

  41. Dotto GP, Horiuchi K, Zinder ND (1982) Initiation and termination of phage f1 plus-strand synthesis. Proc Natl Acad Sci U S A 79(23):7122–7126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Eckert B, Martin A, Balbach J, Schmid FX (2007) Prolyl isomerization as a molecular timer in phage infection. Nat Struct Mol Biol 12(7):619–623

    Article  Google Scholar 

  43. Edens L, Konings RN, Schoenmakers JG (1978) A cascade mechanism of transcription in bacteriophage M13 DNA. Virology 86(2):354–367

    Article  CAS  PubMed  Google Scholar 

  44. Endemann H, Model P (1995) Location of filamentous phage minor coat proteins in phage and in infected cells. J Mol Biol 250(4):496–506

    Article  CAS  PubMed  Google Scholar 

  45. Enea V, Horiuchi K, Turgeon BG, Zinder ND (1977) Physical map of defective interfering particles of bacteriophage f1. J Mol Biol 111(4):395–414

    Article  CAS  PubMed  Google Scholar 

  46. Enea V, Zinder ND (1982) Interference resistant mutants of phage f1. Virology 122(1):222–226

    Article  CAS  PubMed  Google Scholar 

  47. Esvelt KM, Carlson JC, Liu DR (2011) A system for the continuous directed evolution of biomolecules. Nature 472(7344):499–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Feng JN, Russel M, Model P (1997) A permeabilized cell system that assembles filamentous bacteriophage. Proc Natl Acad Sci U S A 94(8):4068–4073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fernandez LA (2004) Prokaryotic expression of antibodies and affibodies. Curr Opin Biotechnol 15(4):364–373

    Article  CAS  PubMed  Google Scholar 

  50. Fuh G, Sidhu SS (2000) Efficient phage display of polypeptides fused to the carboxy-terminus of the M13 gene-3 minor coat protein. FEBS Lett 480(2–3):231–234

    Article  CAS  PubMed  Google Scholar 

  51. Fulford W, Model P (1988) Bacteriophage f1 DNA replication genes. II. The roles of gene V protein and gene II protein in complementary strand synthesis. J Mol Biol 203(1):39–48

    Article  CAS  PubMed  Google Scholar 

  52. Gagic D, Ciric M, Wen WX, Ng F, Rakonjac J (2016) Exploring the secretomes of microbes and microbial communities using filamentous phage display. Front Microbiol 7:429. https://doi.org/10.3389/fmicb.2016.00429

    PubMed  PubMed Central  Google Scholar 

  53. Gamkrelidze M, Dabrowska K (2014) T4 bacteriophage as a phage display platform. Arch Microbiol 196(7):473–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gao C, Lin CH, Lo CH, Mao S, Wirsching P, Lerner RA, Janda KD (1997) Making chemistry selectable by linking it to infectivity. Proc Natl Acad Sci U S A 94(22):11777–11782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gao C, Mao S, Kaufmann G, Wirsching P, Lerner RA, Janda KD (2002) A method for the generation of combinatorial antibody libraries using pIX phage display. Proc Natl Acad Sci U S A 99(20):12612–12616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gerding MA, Ogata Y, Pecora ND, Niki H, de Boer PA (2007) The trans-envelope Tol-Pal complex is part of the cell division machinery and required for proper outer-membrane invagination during cell constriction in E. coli. Mol Microbiol 63(4):1008–1025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Goldbourt A, Gross BJ, Day LA, McDermott AE (2007) Filamentous phage studied by magic-angle spinning NMR: resonance assignment and secondary structure of the coat protein in Pf1. J Am Chem Soc 129(8):2338–2344

    Article  CAS  PubMed  Google Scholar 

  58. Goodrich AF, Steege DA (1999) Roles of polyadenylation and nucleolytic cleavage in the filamentous phage mRNA processing and decay pathways in Escherichia coli. RNA 5(7):972–985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Grant R, Lin T, Webster R, Konigsberg W (1980) Structure of filamentous bacteriophage: isolation, characterization, and localization of the minor coat proteins and orientation of the DNA. In: DuBow M (ed) Bacteriophage Assembly, vol 64. Alan. R. Liss, Inc, New York, pp 413–428

    Google Scholar 

  60. Griffiths AD, Malmqvist M, Marks JD, Bye JM, Embleton MJ, McCafferty J, Baier M, Holliger KP, Gorick BD, Hughes-Jones NC et al (1993) Human anti-self antibodies with high specificity from phage display libraries. EMBO J 12(2):725–734

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Guan Y, Zhang H, Wang AH (1995) Electrostatic potential distribution of the gene V protein from Ff phage facilitates cooperative DNA binding: a model of the GVP-ssDNA complex. Protein Sci 4(2):187–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Haigh NG, Webster RE (1999) The pI and pXI assembly proteins serve separate and essential roles in filamentous phage assembly. J Mol Biol 293(5):1017–1027

    Article  CAS  PubMed  Google Scholar 

  63. Heilpern AJ, Waldor MK (2000) CTXϕ infection of Vibrio cholerae requires the tolQRA gene products. J Bacteriol 182(6):1739–1747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Heilpern AJ, Waldor MK (2003) pIIICTX, a predicted CTXϕ minor coat protein, can expand the host range of coliphage fd to include Vibrio cholerae. J Bacteriol 185(3):1037–1044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Henry KA, Arbabi-Ghahroudi M, Scott JK (2015) Beyond phage display: non-traditional applications of the filamentous bacteriophage as a vaccine carrier, therapeutic biologic, and bioconjugation scaffold. Front Microbiol 6:755. https://doi.org/10.3389/fmicb.2015.00755

    PubMed  PubMed Central  Google Scholar 

  66. Henry KA, Tanha J, Hussack G (2015) Identification of cross-reactive single-domain antibodies against serum albumin using next-generation DNA sequencing. Protein Eng Des Sel 28(10):379–383

    Article  CAS  PubMed  Google Scholar 

  67. Higashitani N, Higashitani A, Guan ZW, Horiuchi K (1996) Recognition mechanisms of the minus-strand origin of phage f1 by Escherichia coli RNA polymerase. Genes Cells 1(9):829–841

    Article  CAS  PubMed  Google Scholar 

  68. Hofschneider PH (1963) Untersuchungen uber kleine E. coli K 12 bakteriophagen 1 und 2 mitteilung. Z Naturforsch Pt B B18(3):203–210

    Google Scholar 

  69. Holland SJ, Sanz C, Perham RN (2006) Identification and specificity of pilus adsorption proteins of filamentous bacteriophages infecting Pseudomonas aeruginosa. Virology 345(2):540–548

    Article  CAS  PubMed  Google Scholar 

  70. Holliger P, Riechmann L, Williams RL (1999) Crystal structure of the two N-terminal domains of g3p from filamentous phage fd at 1.9 A: evidence for conformational lability. J Mol Biol 288(4):649–657

    Article  CAS  PubMed  Google Scholar 

  71. Huang Y, Chiang CY, Lee SK, Gao Y, Hu EL, De Yoreo J, Belcher AM (2005) Programmable assembly of nanoarchitectures using genetically engineered viruses. Nano Lett 5(7):1429–1434

    Article  CAS  PubMed  Google Scholar 

  72. Jespers LS, De Keyser A, Stanssens PE (1996) LambdaZLG6: a phage lambda vector for high-efficiency cloning and surface expression of cDNA libraries on filamentous phage. Gene 173(2):179–181

    Article  CAS  PubMed  Google Scholar 

  73. Johnson TL, Abendroth J, Hol WG, Sandkvist M (2006) Type II secretion: from structure to function. FEMS Microbiol Lett 255(2):175–186

    Article  CAS  PubMed  Google Scholar 

  74. Karlinsey JE, Maguire ME, Becker LA, Crouch MLV, Fang FC (2010) The phage shock protein PspA facilitates divalent metal transport and is required for virulence of Salmonella enterica sv. Typhimurium. Mol Microbiol 78(3):669–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Khanum S (2015) Characterisation of the secretins, large outer membrane channels of Gram-negative bacteria. PhD, Massey University

    Google Scholar 

  76. Korotkov KV, Gonen T, Hol WG (2011) Secretins: dynamic channels for protein transport across membranes. Trends Biochem Sci 36(8):433–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305(3):567–580

    Article  CAS  PubMed  Google Scholar 

  78. Kuo TT, Lin YH, Huang CM, Chang SF, Dai H, Feng TY (1987) The lysogenic cycle of the filamentous phage Cflt from Xanthomonas campestris pv. citri. Virology 156(2):305–312

    Article  CAS  PubMed  Google Scholar 

  79. La Farina M, Model P (1983) Transcription in bacteriophage f1-infected Escherichia coli. Messenger populations in the infected cell. J Mol Biol 164(3):377–393

    Article  PubMed  Google Scholar 

  80. Lawley TD, Klimke WA, Gubbins MJ, Frost LS (2003) F factor conjugation is a true type IV secretion system. FEMS Microbiol Lett 224(1):1–15

    Article  CAS  PubMed  Google Scholar 

  81. Lee S, Mao C, Flynn C, Belcher A (2002) Ordering of quantum dots using genetically engineered viruses. Science 296(5569):892–895

    Article  CAS  PubMed  Google Scholar 

  82. Lerner TJ, Model P (1981) The “steady state” of coliphage f1: DNA synthesis late in infection. Virology 115(2):282–294

    Article  CAS  PubMed  Google Scholar 

  83. Lin A, Jimenez J, Derr J, Vera P, Manapat ML, Esvelt KM, Villanueva L, Liu DR, Chen IA (2011) Inhibition of bacterial conjugation by phage M13 and its protein g3p: quantitative analysis and model. PLoS One 6(5):e19991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Liu DJ, Day LA (1994) Pf1 virus structure: helical coat protein and DNA with paraxial phosphates. Science 265(5172):671–674

    Article  CAS  PubMed  Google Scholar 

  85. Loeb T (1960) Isolation of a bacteriophage specific for the F+ and Hfr mating types of Escherichia coli K-12. Science 131:932–933

    Article  CAS  PubMed  Google Scholar 

  86. Lorenz SH, Jakob RP, Weininger U, Balbach J, Dobbek H, Schmid FX (2011) The filamentous phages fd and IF1 use different mechanisms to infect Escherichia coli. J Mol Biol 405(4):989–1003

    Article  CAS  PubMed  Google Scholar 

  87. Lubkowski J, Hennecke F, Pluckthun A, Wlodawer A (1998) The structural basis of phage display elucidated by the crystal structure of the N-terminal domains of g3p. Nat Struct Biol 5(2):140–147

    Article  CAS  PubMed  Google Scholar 

  88. Lubkowski J, Hennecke F, Pluckthun A, Wlodawer A (1999) Filamentous phage infection: crystal structure of g3p in complex with its coreceptor, the C-terminal domain of TolA. Structure 7(6):711–722

    Article  CAS  PubMed  Google Scholar 

  89. Mai-Prochnow A, Hui JG, Kjelleberg S, Rakonjac J, McDougald D, Rice SA (2015) Big things in small packages: the genetics of filamentous phage and effects on fitness of their host. FEMS Microbiol Rev 39(4):465–487

    Article  PubMed  Google Scholar 

  90. Maier B (2005) Using laser tweezers to measure twitching motility in Neisseria. Curr Opin Microbiol 8(3):344–349

    Article  PubMed  Google Scholar 

  91. Mao C, Solis D, Reiss B, Kottmann S, Sweeney R, Hayhurst A, Georgiou G, Iverson B, Belcher A (2004) Virus-based toolkit for the directed synthesis of magnetic and semiconducting nanowires. Science 303(5655):213–217

    Article  CAS  PubMed  Google Scholar 

  92. Marciano DK, Russel M, Simon SM (1999) An aqueous channel for filamentous phage export. Science 284(5419):1516–1519

    Article  CAS  PubMed  Google Scholar 

  93. Marks JD, Hoogenboom HR, Bonnert TP, McCafferty J, Griffiths AD, Winter G (1991) By-passing immunization. Human antibodies from V-gene libraries displayed on phage. J Mol Biol 222(3):581–597

    Article  CAS  PubMed  Google Scholar 

  94. Marlovits TC, Kubori T, Sukhan A, Thomas DR, Galan JE, Unger VM (2004) Structural insights into the assembly of the type III secretion needle complex. Science 306(5698):1040–1042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Marlovits TC, Stebbins CE (2010) Type III secretion systems shape up as they ship out. Curr Opin Microbiol 13(1):47–52

    Article  CAS  PubMed  Google Scholar 

  96. Marvin DA, Hoffmann-Berling H (1963) Physical and chemical properties of two new small bacteriophages. Nature 197:517–518

    Article  CAS  Google Scholar 

  97. Marvin DA (1998) Filamentous phage structure, infection and assembly. Curr Opin Struct Biol 8(2):150–158

    Article  CAS  PubMed  Google Scholar 

  98. Marvin DA, Symmons MF, Straus SK (2014) Structure and assembly of filamentous bacteriophages. Prog Biophys Mol Biol 114(2):80–122

    Article  CAS  PubMed  Google Scholar 

  99. Marvin DA, Welsh LC, Symmons MF, Scott WR, Straus SK (2006) Molecular structure of fd (f1, M13) filamentous bacteriophage refined with respect to X-ray fibre diffraction and solid-state NMR data supports specific models of phage assembly at the bacterial membrane. J Mol Biol 355(2):294–309

    Article  CAS  PubMed  Google Scholar 

  100. Marzari R, Sblattero D, Righi M, Bradbury A (1997) Extending filamentous phage host range by the grafting of a heterologous receptor binding domain. Gene 185(1):27–33

    Article  CAS  PubMed  Google Scholar 

  101. Matochko WL, Derda R (2013) Error analysis of deep sequencing of phage libraries: peptides censored in sequencing. Comput Math Methods Med 2013:491612

    Article  PubMed  PubMed Central  Google Scholar 

  102. McCafferty J, Griffiths AD, Winter G, Chiswell DJ (1990) Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348(6301):552–554

    Article  CAS  PubMed  Google Scholar 

  103. McLeod SM, Kimsey HH, Davis BM, Waldor MK (2005) CTXϕ and Vibrio cholerae: exploring a newly recognized type of phage-host cell relationship. Mol Microbiol 57(2):347–356

    Article  CAS  PubMed  Google Scholar 

  104. Michel B, Zinder ND (1989) Translational repression in bacteriophage f1: characterization of the gene V protein target on the gene II mRNA. Proc Natl Acad Sci U S A 86(11):4002–4006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Model P, Jovanovic G, Dworkin J (1997) The Escherichia coli phage shock protein operon. Mol Microbiol 24:255–261

    Article  CAS  PubMed  Google Scholar 

  106. Model P, Russel M (1988) Filamentous bacteriophage. In: Calendar R (ed) The bacteriophages, vol 2. Plenum Publishing, New York, pp 375–456

    Chapter  Google Scholar 

  107. Moses PB, Boeke JD, Horiuchi K, Zinder ND (1980) Restructuring the bacteriophage f1 genome: expression of gene VIII in the intergenic space. Virology 104(2):267–278

    Article  CAS  PubMed  Google Scholar 

  108. Mullen LM, Nair SP, Ward JM, Rycroft AN, Henderson B (2006) Phage display in the study of infectious diseases. Trends Microbiol 14(3):141–147

    Article  CAS  PubMed  Google Scholar 

  109. Ng F, Kittelmann S, Patchett ML, Attwood GT, Janssen PH, Rakonjac J, Gagic D (2016) An adhesin from hydrogen-utilizing rumen methanogen Methanobrevibacter ruminantium M1 binds a broad range of hydrogen-producing microorganisms. Environ Microbiol 18(9):3010–3021

    Article  CAS  PubMed  Google Scholar 

  110. Nguyen KT, Adamkiewicz MA, Hebert LE, Zygiel EM, Boyle HR, Martone CM, Melendez-Rios CB, Noren KA, Noren CJ, Hall MF (2014) Identification and characterization of mutant clones with enhanced propagation rates from phage-displayed peptide libraries. Anal Biochem 462:35–43

    Article  CAS  PubMed  Google Scholar 

  111. JW O, Chung WJ, Heo K, Jin HE, Lee BY, Wang E, Zueger C, Wong W, Meyer J, Kim C, Lee SY, Kim WG, Zemla M, Auer M, Hexemer A, Lee SW (2014) Biomimetic virus-based colourimetric sensors. Nat Commun 5:3043. https://doi.org/10.1038/ncomms4043

    Google Scholar 

  112. Olsthoorn R, van Duin J (2011) Bacteriophages with ssRNA. eLS, John Wiley & Sons, Ltd

    Google Scholar 

  113. Onishi Y (1971) Phospholipids of virus-induced membranes in cytoplasm of Escherichia coli. J Bacteriol 107(3):918–925

    CAS  PubMed  Google Scholar 

  114. Ou JT (1973) Inhibition of formation of Escherichia coli mating pairs by f1 and MS2 bacteriophages as determined with a coulter counter. J Bacteriol 114(3):1108–1115

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Pacheco-Gomez R, Kraemer J, Stokoe S, England HJ, Penn CW, Stanley E, Rodger A, Ward J, Hicks MR, Dafforn TR (2012) Detection of pathogenic bacteria using a homogeneous immunoassay based on shear alignment of virus particles and linear dichroism. Anal Chem 84(1):91–97

    Article  CAS  PubMed  Google Scholar 

  116. Packer MS, Liu DR (2015) Methods for the directed evolution of proteins. Nat Rev Genet 16(7):379–394

    Article  CAS  PubMed  Google Scholar 

  117. Park SH, Marassi FM, Black D, Opella SJ (2010) Structure and dynamics of the membrane-bound form of Pf1 coat protein: implications of structural rearrangement for virus assembly. Biophys J 99(5):1465–1474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Petrenko VA, Smith GP, Gong X, Quinn T (1996) A library of organic landscapes on filamentous phage. Protein Eng 9(9):797–801

    Article  CAS  PubMed  Google Scholar 

  119. Pratt D, Tzagoloff H, Erdahl WS (1966) Conditional lethal mutants of the small filamentous coliphage M13. I. Isolation, complementation, cell killing, time of cistron action. Virology 30(3):397–410

    Article  CAS  PubMed  Google Scholar 

  120. Rakonjac J (1998) The roles of pIII in filamentous phage assembly. PhD, The Rockefeller University

    Google Scholar 

  121. Rakonjac J, Bennett NJ, Spagnuolo J, Gagic D, Russel M (2011) Filamentous bacteriophage: biology, phage display and nanotechnology applications. Curr Issues Mol Biol 13(2):51–76

    CAS  PubMed  Google Scholar 

  122. Rakonjac J, Feng J, Model P (1999) Filamentous phage are released from the bacterial membrane by a two-step mechanism involving a short C-terminal fragment of pIII. J Mol Biol 289(5):1253–1265

    Article  CAS  PubMed  Google Scholar 

  123. Rakonjac J, Model P (1998) Roles of pIII in filamentous phage assembly. J Mol Biol 282(1):25–41

    Article  CAS  PubMed  Google Scholar 

  124. Ravetch JV, Horiuchi K, Zinder ND (1979) DNA sequence analysis of the defective interfering particles of bacteriophage f1. J Mol Biol 128(3):305–318

    Article  CAS  PubMed  Google Scholar 

  125. Rice SA, Tan CH, Mikkelsen PJ, Kung V, Woo J, Tay M, Hauser A, McDougald D, Webb JS, Kjelleberg S (2009) The biofilm life cycle and virulence of Pseudomonas aeruginosa are dependent on a filamentous prophage. ISME J 3(3):271–282

    Article  CAS  PubMed  Google Scholar 

  126. Riechmann L, Holliger P (1997) The C-terminal domain of TolA is the coreceptor for filamentous phage infection of E. coli. Cell 90(2):351–360

    Article  CAS  PubMed  Google Scholar 

  127. Rieul C, Cortay JC, Bleicher F, Cozzone AJ (1987) Effect of bacteriophage M13 infection on phosphorylation of DnaK protein and other Escherichia coli proteins. Eur J Biochem 168(3):621–627

    Article  CAS  PubMed  Google Scholar 

  128. Russel M (1993) Protein-protein interactions during filamentous phage assembly. J Mol Biol 231(3):689–697

    Article  CAS  PubMed  Google Scholar 

  129. Russel M, Kidd S, Kelley MR (1986) An improved filamentous helper phage for generating single-stranded plasmid DNA. Gene 45(3):333–338

    Article  CAS  PubMed  Google Scholar 

  130. Russel M, Linderoth NA, Sali A (1997) Filamentous phage assembly: variation on a protein export theme. Gene 192(1):23–32

    Article  CAS  PubMed  Google Scholar 

  131. Russel M, Model P (1983) A bacterial gene, fip, required for filamentous bacteriophage fl assembly. J Bacteriol 154(3):1064–1076

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Russel M, Model P (1986) The role of thioredoxin in filamentous phage assembly – construction, isolation, and characterisation of mutant thioredoxins. J Biol Chem 261(32):4997–5005

    Google Scholar 

  133. Russel M, Model P (1989) Genetic analysis of the filamentous bacteriophage packaging signal and of the proteins that interact with it. J Virol 63(8):3284–3295

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Russel M, Model P (2006) Filamentous Phage. In: Calendar RC (ed) The bacteriophages, 2nd edn. Oxford University Press, Inc, New York, pp 146–160

    Google Scholar 

  135. Russel M, Whirlow H, Sun TP, Webster RE (1988) Low-frequency infection of F- bacteria by transducing particles of filamentous bacteriophages. J Bacteriol 170(11):5312–5316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Samuelson JC, Chen M, Jiang F, Moller I, Wiedmann M, Kuhn A, Phillips GJ, Dalbey RE (2000) YidC mediates membrane protein insertion in bacteria. Nature 406(6796):637–641

    Article  CAS  PubMed  Google Scholar 

  137. Sattar S (2013) Filamentous phage-derived nano-rods for applications in diagnostics and vaccines. PhD, Massey University

    Google Scholar 

  138. Sattar S, Bennett NJ, Wen WX, Guthrie JM, Blackwell LF, Conway JF, Rakonjac J (2015) Ff-nano, short functionalized nanorods derived from Ff (f1, fd, or M13) filamentous bacteriophage. Front Microbiol 6:316. https://doi.org/10.3389/fmicb.2015.00316

    Article  PubMed  PubMed Central  Google Scholar 

  139. Sblattero D, Bradbury A (2000) Exploiting recombination in single bacteria to make large phage antibody libraries. Nat Biotechnol 18(1):75–80

    Article  CAS  PubMed  Google Scholar 

  140. Schwartz FM, Zinder N (1968) Morphological changes in Escherichia coli infected with the DNA bacteriophage f1. Virology 34(2):352–355

    Article  CAS  PubMed  Google Scholar 

  141. Scott JK, Smith GP (1990) Searching for peptide ligands with an epitope library. Science 249(4967):386–390

    Article  CAS  PubMed  Google Scholar 

  142. Sharma P, Ward A, Gibaud T, Hagan MF, Dogic Z (2014) Hierarchical organization of chiral rafts in colloidal membranes. Nature 513(7516):77–80

    Article  CAS  PubMed  Google Scholar 

  143. Smeal SW, Schmitt MA, Pereira RR, Prasad A, Fisk JD (2017) Simulation of the M13 life cycle I: assembly of a genetically-structured deterministic chemical kinetic simulation. Virology 500:259–274

    Article  CAS  PubMed  Google Scholar 

  144. Smeal SW, Schmitt MA, Pereira RR, Prasad A, Fisk JD (2017) Simulation of the M13 life cycle II: investigation of the control mechanisms of M13 infection and establishment of the carrier state. Virology 500:275–284

    Article  CAS  PubMed  Google Scholar 

  145. Smilowitz H (1974) Bacteriophage f1 infection: fate of the parental major coat protein. J Virol 13(1):94–99

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Soltes G, Hust M, Ng KK, Bansal A, Field J, Stewart DI, Dubel S, Cha S, Wiersma EJ (2007) On the influence of vector design on antibody phage display. J Biotechnol 127(4):626–637

    Article  CAS  PubMed  Google Scholar 

  147. Spagnuolo J, Opalka N, Wen WX, Gagic D, Chabaud E, Bellini P, Bennett MD, Norris GE, Darst SA, Russel M, Rakonjac J (2010) Identification of the gate regions in the primary structure of the secretin pIV. Mol Microbiol 76(1):133–150

    Article  CAS  PubMed  Google Scholar 

  148. Specthrie L, Bullitt E, Horiuchi K, Model P, Russel M, Makowski L (1992) Construction of a microphage variant of filamentous bacteriophage. J Mol Biol 228(3):720–724

    Article  CAS  PubMed  Google Scholar 

  149. Stopar D, Spruijt RB, Wolfs CJ, Hemminga MA (2002) Structural characterization of bacteriophage M13 solubilization by amphiphiles. Biochim Biophys Acta 1594(1):54–63

    Article  CAS  PubMed  Google Scholar 

  150. Tjhung KF, Deiss F, Tran J, Chou Y, Derda R (2015) Intra-domain phage display (ID-PhD) of peptides and protein mini-domains censored from canonical pIII phage display. Front Microbiol 6:340. https://doi.org/10.3389/fmicb.2015.00340

    Article  PubMed  PubMed Central  Google Scholar 

  151. Tran NQ, Lee SJ, Akabayov B, Johnson DE, Richardson CC (2012) Thioredoxin, the processivity factor, sequesters an exposed cysteine in the thumb domain of bacteriophage T7 DNA polymerase. J Biol Chem 287(47):39732–39741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Trenkner E, Bonhoeffer F, Gierer A (1967) The fate of the protein component of bacteriophage fd during infection. Biochem Biophys Res Commun 28(6):932–939

    Article  CAS  PubMed  Google Scholar 

  153. Vieira J, Messing J (1987) Production of single-stranded plasmid DNA. Methods Enzymol 153:3–11

    Article  CAS  PubMed  Google Scholar 

  154. Weiner L, Model P (1994) Role of an Escherichia coli stress-response operon in stationary-phase survival. Proc Natl Acad Sci U S A 91(6):2191–2195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Woolford JL Jr, Cashman JS, Webster RE (1974) F1 coat protein synthesis and altered phospholipid metabolism in f1 infected Escherichia coli. Virology 58(2):544–560

    Article  CAS  PubMed  Google Scholar 

  156. Worrall LJ, Hong C, Vuckovic M, Deng W, Bergeron JR, Majewski DD, Huang RK, Spreter T, Finlay BB, Yu Z, Strynadka NC (2016) Near-atomic-resolution cryo-EM analysis of the salmonella T3S injectisome basal body. Nature 540:597–601

    Article  CAS  Google Scholar 

  157. Yan Z, Yin M, Xu D, Zhu Y, Li X (2017) Structural insights into the secretin translocation channel in the type II secretion system. Nat Struct Mol Biol 24(2):177–183

    Article  CAS  PubMed  Google Scholar 

  158. Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33(1):103–119

    Article  CAS  PubMed  Google Scholar 

  159. Zenkin N, Naryshkina T, Kuznedelov K, Severinov K (2006) The mechanism of DNA replication primer synthesis by RNA polymerase. Nature 439(7076):617–620

    Article  CAS  PubMed  Google Scholar 

  160. Zhang KY, He J, Yang M, Yen M, Yin J (2009) Identifying natural product biosynthetic genes from a soil metagenome by using T7 phage selection. Chembiochem 10(16):2599–2606

    Article  CAS  PubMed  Google Scholar 

  161. Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinform 9:40. https://doi.org/10.1186/1471-2105-9-40

    Article  CAS  Google Scholar 

  162. Zinder ND, Horiuchi K (1985) Multiregulatory element of filamentous bacteriophages. Microbiol Rev 49(2):101–106

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Zweckstetter M, Bax A (2001) Characterization of molecular alignment in aqueous suspensions of Pf1 bacteriophage. J Biomol NMR 20(4):365–377

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Jasna Rakonjac wishes to especially acknowledge the late Peter Model (Rockefeller University), for generously sharing his knowledge through discussions and advice, and for the gifts of filamentous phage and E. coli strain collections. Funding to JR laboratory by Palmerston North Medical Research Foundation, Massey University, Institute of Fundamental Sciences, Anonymous Donor and the Maurice Wilkins Centre for Molecular Biodiscovery is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasna Rakonjac .

Editor information

Editors and Affiliations

Additional information

This article is dedicated to the memory of Peter Model, a pioneer of filamentous bacteriophage research and a greatly admired mentor to students and junior faculty at the Rockefeller University.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rakonjac, J., Russel, M., Khanum, S., Brooke, S.J., Rajič, M. (2017). Filamentous Phage: Structure and Biology. In: Lim, T. (eds) Recombinant Antibodies for Infectious Diseases. Advances in Experimental Medicine and Biology, vol 1053. Springer, Cham. https://doi.org/10.1007/978-3-319-72077-7_1

Download citation

Publish with us

Policies and ethics