Notions of Cauchyness and Metastability

  • Hannes DienerEmail author
  • Robert Lubarsky
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10703)


We show that several weakenings of the Cauchy condition are all equivalent under the assumption of countable choice, and investigate to what extent choice is necessary. We also show that the syntactically reminiscent notion of metastability allows similar variations, but is empty in terms of its constructive content.


Cauchy condition Metastability Axiom of choice Constructive analysis 


  1. 1.
    Aczel, P., Rathjen, M.: Notes on constructive set theory. Technical report 40, Institut Mittag-Leffler. The Royal Swedish Academy of Sciences (2001)Google Scholar
  2. 2.
    Avigad, J., Dean, E.T., Rute, J.: A metastable dominated convergence theorem. J. Logic Anal. 4(3), 1–19 (2012)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Berger, J., Bridges, D., Palmgren, E.: Double sequences, almost cauchyness and BD-N. Logic J. IGPL 20(1), 349–354 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bishop, E., Bridges, D.: Constructive Analysis. Springer, Heidelberg. (1985)
  5. 5.
    Chang, C.C., Keisler, H.J.: Model Theory. Dover Books on Mathematics, 3rd edn. Dover Publications, New York (2013)zbMATHGoogle Scholar
  6. 6.
    Hendtlass, M., Lubarsky, R.: Separating fragments of WLEM, LPO, and MP. J. Symbol. Logic 81(4), 1315–1343 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Lietz, P.: From Constructive Mathematics to Computable Analysis via the Realizability Interpretation. PhD thesis, TU Darmstadt (2004)Google Scholar
  8. 8.
    Lubarsky, R.S., Diener, H.: Principles weaker than BD-N. J. Symbol. Logic 78(3), 873–885 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Lubarsky, R.S.: Intuitionistic \(L\). In: Crossley et al. (ed.) Logical Methods. In Honor of Anil Nerode’s Sixtieth Birthday of Progress in Computer Science and Applied Logic, vol. 12, pp. 555–571. Birkhäuser Boston, Boston (1993)Google Scholar
  10. 10.
    Lubarsky, R.S.: On the failure of BD-N and BD, and an application to the anti-Specker property. J. Symbol. Logic 78(1), 39–56 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Mandelkern, M.: Limited omniscience and the Bolzano-Weierstrass principle. Bull. London Math. Soc. 20, 319–320 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Richman, F.: Constructive mathematics without choice. In: Schuster, P., Berger, U., Osswald, H. (eds.) Reuniting the Antipodes: Constructive and Nonstandard Views of the Continuum. Synthese Library. Kluwer Academic Publishers, Dordrecht (2001)Google Scholar
  13. 13.
    Tao, T.: Soft analysis, hard analysis, and the finite convergence principle, May 2007.

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.University of CanterburyChristchurchNew Zealand
  2. 2.Florida Atlantic UniversityBoca RatonUSA

Personalised recommendations