Justification Awareness Models

  • Sergei ArtemovEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10703)


Justification Awareness Models, JAMs, incorporate two principal ideas: (i) justifications are prime objects of the model: knowledge and belief are defined evidence-based concepts; (ii) awareness restrictions are applied to justifications rather than to propositions, which allows for the maintaining of desirable closure properties. JAMs naturally include major justification models, Kripke models and, in addition, represent situations with multiple possibly fallible justifications. As an example, we build a JAM for Russell’s well-known Prime Minister scenario which, in full generality, was previously off the scope of rigorous epistemic modeling.


Modal logic Justification logic Epistemology Knowledge Belief 



The author is grateful to Melvin Fitting, Vladimir Krupski, Elena Nogina, and Tudor Protopopescu for helpful suggestions. Special thanks to Karen Kletter for editing and proofreading this text.


  1. 1.
    Artemov, S.: Explicit provability and constructive semantics. Bull. Symbolic Logic 7(1), 1–36 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Artemov, S.: The logic of justification. Rev. Symbolic Logic 1(4), 477–513 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Artemov, S.: The ontology of justifications in the logical setting. Stud. Logica. 100(1–2), 17–30 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Artemov, S.: Knowing the model. Published online at: arXiv:1610.04955 [math.LO] (2016)
  5. 5.
    Artemov, S.: Epistemic modeling with justifications. Published online at: arXiv:1703.07028 [math.LO] (2017)
  6. 6.
    Cresswell, M.J.: Hyperintensional logic. Stud. Logica. 34(1), 25–38 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Fagin, R., Halpern, J.: Belief, awareness, and limited reasoning. Artif. Intell. 34(1), 39–76 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Fagin, R., Halpern, J., Moses, Y., Vardi, M.: Reasoning About Knowledge. MIT Press, Cambridge (1995)zbMATHGoogle Scholar
  9. 9.
    Fitting, M.: The logic of proofs, semantically. Ann. Pure Appl. Logic 132(1), 1–25 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Fitting, M.: Possible world semantics for first-order logic of proofs. Ann. Pure Appl. Logic 165(1), 225–240 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Fitting, M.: Modal logics, justification logics, and realization. Ann. Pure Appl. Logic 167(8), 615–648 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Gettier, E.: Is justified true belief knowledge? Analysis 23, 121–123 (1963)CrossRefGoogle Scholar
  13. 13.
    Krupski, V.N.: Operational logic of proofs with functionality condition on proof predicate. In: Adian, S., Nerode, A. (eds.) LFCS 1997. LNCS, vol. 1234, pp. 167–177. Springer, Heidelberg (1997). CrossRefGoogle Scholar
  14. 14.
    Krupski, V.: The single-conclusion proof logic and inference rules specification. Ann. Pure Appl. Logic 113(1), 181–206 (2002)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Krupski, V.: On the sharpness and the single-conclusion property of basic justification models. In: Artemov, S., Nerode, A. (eds.) LFCS 2018. LNCS, vol. 10703, pp. 211–220. Springer, Cham (2018)Google Scholar
  16. 16.
    Kuznets, R., Struder, T.: Justifications, ontology, and conservativity. In: Bolander, T., Braüner, T., Ghilardi, S., Moss, L. (eds.) Advances in Modal Logic, vol. 9, pp. 437–458. College Publications, London (2012)Google Scholar
  17. 17.
    Meyer, J.-J.C., van der Hoek, W.: Epistemic Logic for AI and Computer Science. CUP, Cambridge (1995)CrossRefzbMATHGoogle Scholar
  18. 18.
    Mkrtychev, A.: Models for the logic of proofs. In: Adian, S., Nerode, A. (eds.) LFCS 1997. LNCS, vol. 1234, pp. 266–275. Springer, Heidelberg (1997). CrossRefGoogle Scholar
  19. 19.
    Russell, B.: The Problems of Philosophy. Williams and Norgate, London (1912)zbMATHGoogle Scholar
  20. 20.
    Sedlár, I.: Justifications, awareness and epistemic dynamics. In: Artemov, S., Nerode, A. (eds.) LFCS 2013. LNCS, vol. 7734, pp. 307–318. Springer, Heidelberg (2013). CrossRefGoogle Scholar
  21. 21.
    Williamson, T.: A note on Gettier cases in epistemic logic. Philos. Stud. 172(1), 129–140 (2015)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.The City University of New York, The Graduate CenterNew York CityUSA

Personalised recommendations