Advertisement

Founded Semantics and Constraint Semantics of Logic Rules

  • Yanhong A. LiuEmail author
  • Scott D. Stoller
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10703)

Abstract

Logic rules and inference are fundamental in computer science and have been studied extensively. However, prior semantics of logic languages can have subtle implications and can disagree significantly.

This paper describes a simple new semantics for logic rules, founded semantics, and its straightforward extension to another simple new semantics, constraint semantics, that unify the core of different prior semantics. The new semantics support unrestricted negation, as well as unrestricted existential and universal quantifications. They are uniquely expressive and intuitive by allowing assumptions about the predicates and rules to be specified explicitly. They are completely declarative and relate cleanly to prior semantics. In addition, founded semantics can be computed in linear time in the size of the ground program.

Keywords

Datalog Unrestricted negation Existential and universal quantifications Fixed-point semantics Constraints Well-founded semantics Stable model semantics Fitting (Kripke-Kleene) semantics Supported model semantics 

Notes

Acknowledgment

We thank David S. Warren, Michael Kifer, Anil Nerode, Tuncay Tekle, Molham Aref, Marc Denecker, Cordell Green, Goyal Gupta, Bob Kowalski, Fangzhen Lin, Alberto Pettorossi, Maurizio Proietti, Neng-Fa Zhou, and many others for helpful comments and discussions on logic languages, semantics, and efficient computations.

References

  1. 1.
    Apt, K.R., Bol, R.N.: Logic programming and negation: a survey. J. Log. Program. 19, 9–71 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Fitting, M.: Fixpoint semantics for logic programming: a survey. Theor. Comput. Sci. 278(1), 25–51 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Clark, K.L.: Negation as failure. In: Gallaire, H., Minker, J. (eds.) Logic and Databases, pp. 293–322. Plenum Press, New York (1978)Google Scholar
  4. 4.
    Van Gelder, A., Ross, K., Schlipf, J.S.: The well-founded semantics for general logic programs. J. ACM 38(3), 620–650 (1991)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proceedings of the 5th International Conference and Symposium on Logic Programming, pp. 1070–1080. MIT Press (1988)Google Scholar
  6. 6.
    Apt, K.R., Blair, H.A., Walker, A.: Towards a theory of declarative knowledge. In: Foundations of Deductive Databases and Logic Programming, pp. 89–148. Morgan Kaufman (1988)Google Scholar
  7. 7.
    Fitting, M.: A Kripke-Kleene semantics for logic programs. J. Log. Program. 2(4), 295–312 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Ceri, S., Gottlob, G., Tanca, L.: Logic Programming and Databases. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  9. 9.
    Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases: The Logical Level. Addison-Wesley, Reading (1995)Google Scholar
  10. 10.
    Liu, Y.A., Stoller, S.D.: The founded semantics and constraint semantics of logic rules. Computing Research Repository arXiv:1606.06269 [cs.LO] (Revised 2017) (2016)
  11. 11.
    Chen, W., Kifer, M., Warren, D.S.: HiLog: a foundation for higher-order logic programming. J. Log. Program. 15(3), 187–230 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Liu, Y.A., Stoller, S.D.: From datalog rules to efficient programs with time and space guarantees. ACM Trans. Program. Lang. Syst. 31(6), 1–38 (2009)CrossRefGoogle Scholar
  13. 13.
    Zukowski, U.: Flexible computation of the well-founded semantics of normal logic programs. Ph.D. thesis, Faculty of Computer Science and Mathematics, University of Passau (2001)Google Scholar
  14. 14.
    Przymusinski, T.C.: Well-founded and stationary models of logic programs. Ann. Math. Artif. Intell. 12(3), 141–187 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Ramakrishnan, R., Ullman, J.D.: A survey of deductive database systems. J. Log. Program. 23(2), 125–149 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Lloyd, J.W., Topor, R.W.: Making Prolog more expressive. J. Log. Program. 1(3), 225–240 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Sato, T., Tamaki, H.: Transformational logic program synthesis. In: Proceedings of the International Conference on Fifth Generation Computer Systems, pp. 195–201 (1984)Google Scholar
  18. 18.
    Jaffar, J., Lassez, J.-L., Maher, M.J.: Some issues and trends in the semantics of logic programming. In: Shapiro, E. (ed.) ICLP 1986. LNCS, vol. 225, pp. 223–241. Springer, Heidelberg (1986).  https://doi.org/10.1007/3-540-16492-8_78 CrossRefGoogle Scholar
  19. 19.
    Chan, D.: Constructive negation based on the completed database. In: Proceedings of the 5th International Conference and Symposium on Logic Programming, pp. 111–125. MIT Press (1988)Google Scholar
  20. 20.
    Foo, N.Y., Rao, A.S., Taylor, A., Walker, A.: Deduced relevant types and constructive negation. In: Proceedings of the 5th International Conference and Symposium on Logic Programming, pp. 126–139 (1988)Google Scholar
  21. 21.
    Stuckey, P.J.: Constructive negation for constraint logic programming. In: Proceedings of the 6th Annual IEEE Symposium on Logic in Computer Science, pp. 328–339 (1991)Google Scholar
  22. 22.
    Denecker, M., Ternovska, E.: A logic of nonmonotone inductive definitions. ACM Trans. Comput. Log. 9(2), 14 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Dung, P.M.: On the relations between stable and well-founded semantics of logic programs. Theor. Comput. Sci. 105(1), 7–25 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Lin, F., Zhao, Y.: Assat: computing answer sets of a logic program by sat solvers. Artif. Intell. 157(1–2), 115–137 (2004)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Computer Science DepartmentStony Brook UniversityStony BrookUSA

Personalised recommendations