Advertisement

Gathering in Dynamic Rings

  • Giuseppe Antonio Di LunaEmail author
  • Paola Flocchini
  • Linda Pagli
  • Giuseppe Prencipe
  • Nicola Santoro
  • Giovanni Viglietta
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10641)

Abstract

The gathering (or multi-agent rendezvous) problem requires a set of mobile agents, arbitrarily positioned at different nodes of a network to group within finite time at the same location, not fixed in advanced.

The extensive existing literature on this problem shares the same fundamental assumption: the topological structure does not change during the rendezvous or the gathering; this is true also for those investigations that consider faulty nodes. In other words, they only consider static graphs.

In this paper we start the investigation of gathering in dynamic graphs, that is networks where the topology changes continuously and at unpredictable locations.

We study the feasibility of gathering mobile agents, identical and without explicit communication capabilities, in a dynamic ring of anonymous nodes; the class of dynamics we consider is the classic 1-interval-connectivity. We focus on the impact that factors such as chirality (i.e., a common sense of orientation) and cross detection (i.e., the ability to detect, when traversing an edge, whether some agent is traversing it in the other direction), have on the solvability of the problem; and we establish several results.

We provide a complete characterization of the classes of initial configurations from which the gathering problem is solvable in presence and in absence of cross detection and of chirality. The feasibility results of the characterization are all constructive: we provide distributed algorithms that allow the agents to gather within low polynomial time. In particular, the protocols for gathering with cross detection are time optimal.

We also show that cross detection is a powerful computational element. We prove that, without chirality, knowledge of the ring size is strictly more powerful than knowledge of the number of agents; on the other hand, with chirality, knowledge of n can be substituted by knowledge of k, yielding the same classes of feasible initial configurations.

From our investigation it follows that, for the gathering problem, the computational obstacles created by the dynamic nature of the ring can be overcome by the presence of chirality or of cross-detection.

Keywords

Dynamic graphs Agents Gathering 

References

  1. 1.
    Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous. Kluwer, Boston (2003).  https://doi.org/10.1007/b100809 zbMATHGoogle Scholar
  2. 2.
    Barrière, L., Flocchini, P., Fraigniaud, P., Santoro, N.: Rendezvous and election of mobile agents: impact of sense of direction. Theor. Comput. Syst. 40(2), 143–162 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Baston, V., Gal, S.: Rendezvous search when marks are left at the starting points. Naval Res. Logist. 38, 469–494 (1991)CrossRefzbMATHGoogle Scholar
  4. 4.
    Biely, M., Robinson, P., Schmid, U., Schwarz, M., Winkler, K.: Gracefully degrading consensus and k-set agreement in directed dynamic networks. In: Bouajjani, A., Fauconnier, H. (eds.) NETYS 2015. LNCS, vol. 9466, pp. 109–124. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-26850-7_8 CrossRefGoogle Scholar
  5. 5.
    Bournat, M., Datta, A.K., Dubois, S.: Self-stabilizing robots in highly dynamic environments. In: Bonakdarpour, B., Petit, F. (eds.) SSS 2016. LNCS, vol. 10083, pp. 54–69. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-49259-9_5 CrossRefGoogle Scholar
  6. 6.
    Bouchard, S., Dieudonne, Y., Ducourthial, B.: Byzantine gathering in networks. Distrib. Comput. 29(6), 435–457 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Casteigts, A., Flocchini, P., Mans, B., Santoro, N.: Measuring temporal lags in delay-tolerant networks. IEEE Trans. Comput. 63(2), 397–410 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs and dynamic networks. Int. J. Parallel Emergent Distrib. Syst. 27(5), 387–408 (2012)CrossRefGoogle Scholar
  9. 9.
    Chalopin, J., Das, S., Santoro, N.: Rendezvous of mobile agents in unknown graphs with faulty links. In: Pelc, A. (ed.) DISC 2007. LNCS, vol. 4731, pp. 108–122. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-75142-7_11 CrossRefGoogle Scholar
  10. 10.
    Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by mobile robots: gathering. SIAM J. Comput. 41(4), 829–879 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Cohen, R., Peleg, D.: Convergence properties of the gravitational algorithm in asynchronous robot systems. SIAM J. Comput. 34, 1516–1528 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Czyzowicz, J., Labourel, A., Pelc, A.: How to meet asynchronously (almost) everywhere. ACM Trans. Algorithms 8(4), 37:1–37:14 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Czyzowicz, J., Dobrev, S., Kranakis, E., Krizanc, D.: The power of tokens: rendezvous and symmetry detection for two mobile agents in a ring. In: Geffert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat, P., Bieliková, M. (eds.) SOFSEM 2008. LNCS, vol. 4910, pp. 234–246. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-77566-9_20 CrossRefGoogle Scholar
  14. 14.
    Das, S., Luccio, F.L., Focardi, R., Markou, E., Moro, D., Squarcina, M.: Gathering of robots in a ring with mobile faults. In: 17th Italian Conference on Theoretical Computer Science (ICTCS), pp. 122–135 (2016)Google Scholar
  15. 15.
    Das, S., Luccio, F.L., Markou, E.: Mobile agents rendezvous in spite of a malicious agent. In: Bose, P., Gąsieniec, L.A., Römer, K., Wattenhofer, R. (eds.) ALGOSENSORS 2015. LNCS, vol. 9536, pp. 211–224. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-28472-9_16 CrossRefGoogle Scholar
  16. 16.
    Degener, B., Kempkes, B., Langner, T., Meyer auf der Heide, F., Pietrzyk, P., Wattenhofer, R.: A tight runtime bound for synchronous gathering of autonomous robots with limited visibility. In: 23rd ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pp. 139–148 (2011)Google Scholar
  17. 17.
    De Marco, G., Gargano, L., Kranakis, E., Krizanc, D., Pelc, A., Vaccaro, U.: Asynchronous deterministic rendezvous in graphs. Theoret. Comput. Sci. 355, 315–326 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Dessmark, A., Fraigniaud, P., Pelc, A.: Deterministic rendezvous in graphs. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 184–195. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-39658-1_19 CrossRefGoogle Scholar
  19. 19.
    Di Luna, G.A., Dobrev, S., Flocchini, P., Santoro, N.: Live exploration of dynamic rings. In: 36th IEEE International Conference on Distributed Computing Systems, (ICDCS), pp. 570–579 (2016)Google Scholar
  20. 20.
    Di Luna, G.A., Flocchini, P., Pagli, L., Prencipe, G., Santoro, N., Viglietta, G.: Gathering in dynamic rings. Arxiv, April 2017Google Scholar
  21. 21.
    Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Multiple agents RendezVous in a ring in spite of a black hole. In: Papatriantafilou, M., Hunel, P. (eds.) OPODIS 2003. LNCS, vol. 3144, pp. 34–46. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-27860-3_6 CrossRefGoogle Scholar
  22. 22.
    Flocchini, P., Kranakis, E., Krizanc, D., Santoro, N., Sawchuk, C.: Multiple Mobile Agent Rendezvous in a Ring. In: Farach-Colton, M. (ed.) LATIN 2004. LNCS, vol. 2976, pp. 599–608. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24698-5_62 CrossRefGoogle Scholar
  23. 23.
    Flocchini, P., Mans, B., Santoro, N.: On the exploration of time-varying networks. Theoret. Comput. Sci. 469, 53–68 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous robots with limited visibility. Theoret. Comput. Sci. 337(1–3), 147–168 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Flocchini, P., Santoro, N., Viglietta, G., Yamashita, M.: Rendezvous with constant memory. Theoret. Comput. Sci. 621, 57–72 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Haeupler, B., Kuhn, F.: Lower bounds on information dissemination in dynamic networks. In: Aguilera, M.K. (ed.) DISC 2012. LNCS, vol. 7611, pp. 166–180. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33651-5_12 CrossRefGoogle Scholar
  27. 27.
    Ilcinkas, D., Klasing, R., Wade, A.M.: Exploration of constantly connected dynamic graphs based on cactuses. In: Halldórsson, M.M. (ed.) SIROCCO 2014. LNCS, vol. 8576, pp. 250–262. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-09620-9_20 Google Scholar
  28. 28.
    Ilcinkas, D., Wade, A.M.: Exploration of the T-interval-connected dynamic graphs: the case of the ring. In: Moscibroda, T., Rescigno, A.A. (eds.) SIROCCO 2013. LNCS, vol. 8179, pp. 13–23. Springer, Cham (2013).  https://doi.org/10.1007/978-3-319-03578-9_2 CrossRefGoogle Scholar
  29. 29.
    Klasing, R., Markou, E., Pelc, A.: Gathering asynchronous oblivious mobile robots in a ring. Theoret. Comput. Sci. 390(1), 27–39 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Kranakis, E., Krizanc, D., Markou, E.: Mobile agent rendezvous in a synchronous torus. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 653–664. Springer, Heidelberg (2006).  https://doi.org/10.1007/11682462_60 CrossRefGoogle Scholar
  31. 31.
    Kranakis, E., Krizanc, D., Markou, E.: The Mobile Agent Rendezvous Problem in the Ring. Morgan & Claypool (2010)Google Scholar
  32. 32.
    Kranakis, E., Krizanc, D., Santoro, N., Sawchuk, C.: Mobile agent rendezvous problem in the ring. In: 23rd International Conference on Distributed Computing Systems (ICDCS), pp. 592–599 (2003)Google Scholar
  33. 33.
    Kuhn, F., Lynch, N., Oshman, R.: Distributed computation in dynamic networks. In: 42th Symposium on Theory of Computing (STOC), pp. 513–522 (2010)Google Scholar
  34. 34.
    Kuhn, F., Moses, Y., Oshman, R.: Coordinated consensus in dynamic networks. In: 30th Symposium on Principles of Distributed Computing (PODC), pp. 1–10 (2011)Google Scholar
  35. 35.
    Kuhn, F., Oshman, R.: Dynamic networks: models and algorithms. SIGACT News 42(1), 82–96 (2011)CrossRefGoogle Scholar
  36. 36.
    Lin, J., Morse, A.S., Anderson, B.D.O.: The multi-agent rendezvous problem. Parts 1 and 2. SIAM J. Control Optim. 46(6), 2096–2147 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Pagli, L., Prencipe, G., Viglietta, G.: Getting close without touching: near-gathering for autonomous mobile robots. Distrib. Comput. 28(5), 333–349 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Pelc, A.: Deterministic rendezvous in networks: a comprehensive survey. Networks 59(3), 331–347 (2012)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Sawchuk, C.: Mobile agent rendezvous in the ring. Ph.D Thesis, Carleton University, January 2004Google Scholar
  40. 40.
    Ta-Shma, A., Zwick, U.: Deterministic rendezvous, treasure hunts, and strongly universal exploration sequences. ACM Trans. Algorithms 10(3), 12 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Yu, X., Yung, M.: Agent rendezvous: a dynamic symmetry-breaking problem. In: Meyer, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 610–621. Springer, Heidelberg (1996).  https://doi.org/10.1007/3-540-61440-0_163 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Giuseppe Antonio Di Luna
    • 1
    Email author
  • Paola Flocchini
    • 1
  • Linda Pagli
    • 2
  • Giuseppe Prencipe
    • 2
  • Nicola Santoro
    • 3
  • Giovanni Viglietta
    • 1
  1. 1.School of Electrical Engineering and Computer ScienceUniversity of OttawaOttawaCanada
  2. 2.Dipartimento di InformaticaUniversity of PisaPisaItaly
  3. 3.School of Computer ScienceCarleton UniversityOttawaCanada

Personalised recommendations