Token Traversal in Ad Hoc Wireless Networks via Implicit Carrier Sensing

  • Tomasz JurdzinskiEmail author
  • Michal Rozanski
  • Grzegorz Stachowiak
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10641)


Communication problems in ad hoc wireless networks have been already widely studied under the SINR model, but a vast majority of results concern networks with constraints on connectivity, so called strongly-connected networks. What happens if the network is not strongly-connected, e.g., it contains some long but still viable “shortcut links” connecting transmission boundaries? Even a single broadcast in such ad hoc weakly-connected networks with uniform transmission powers requires \(\varOmega (n)\) communication rounds, where n is the number of nodes in the network. The best up-to-date (randomized) distributed algorithm, designed by Daum et al. [10], accomplishes broadcast task in \(O(n\log ^2n)\). In this work we show a novel deterministic distributed implementation of token traversal in the SINR model with uniform transmission powers and no restriction on connectivity. We show that it is efficient even in a very harsh model of weakly-connected networks without GPS, carrier sensing and other helping features. We apply this method to span a traversal tree and accomplish broadcast in \(O(n\log N)\) communication rounds, deterministically, provided nodes are equipped with unique IDs in the range [1, N] for \(N\ge n\). This result implies an \(O(n\log n)\)-round randomized solution that does not require IDs, which improves the result from [10]. The lower bound \(\varOmega (n\log N)\) for deterministic algorithms proved in our work shows that our result is tight without randomization. Our implementation of token traversal routine is based on a novel implicit algorithmic carrier sensing method and a new type of selectors, which might be of independent interest.


Wireless ad hoc networks SINR Token traversal Broadcast Deterministic and randomized algorithms Algorithmic carrier sensing Selectors BTD trees 



The authors would like to thank Darek Kowalski for fruitful discussions and his comments on the paper.


  1. 1.
    Alon, N., Bar-Noy, A., Linial, N., Peleg, D.: A lower bound for radio broadcast. J. Comput. Syst. Sci. 43(2), 290–298 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bar-Yehuda, R., Goldreich, O., Itai, A.: On the time-complexity of broadcast in multi-hop radio networks: an exponential gap between determinism and randomization. J. Comput. Syst. Sci. 45(1), 104–126 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bienkowski, M., Jurdzinski, T., Korzeniowski, M., Kowalski, D.R.: Distributed online and stochastic queuing on a multiple access channel. In: Aguilera, M.K. (ed.) DISC 2012. LNCS, vol. 7611, pp. 121–135. Springer, Heidelberg (2012). CrossRefGoogle Scholar
  4. 4.
    Bonis, A.D., Gasieniec, L., Vaccaro, U.: Optimal two-stage algorithms for group testing problems. SIAM J. Comput. 34(5), 1253–1270 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bruschi, D., Pinto, M.D.: Lower bounds for the broadcast problem in mobile radio networks. Distrib. Comput. 10(3), 129–135 (1997)CrossRefGoogle Scholar
  6. 6.
    Chlebus, B.S., Kowalski, D.R., Pelc, A., Rokicki, M.A.: Efficient distributed communication in ad-hoc radio networks. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6756, pp. 613–624. Springer, Heidelberg (2011). CrossRefGoogle Scholar
  7. 7.
    Clementi, A.E.F., Crescenzi, P., Monti, A., Penna, P., Silvestri, R.: On computing ad-hoc selective families. In: Goemans, M., Jansen, K., Rolim, J.D.P., Trevisan, L. (eds.) APPROX/RANDOM-2001. LNCS, vol. 2129, pp. 211–222. Springer, Heidelberg (2001). CrossRefGoogle Scholar
  8. 8.
    Clementi, A.E.F., Monti, A., Silvestri, R.: Selective families, superimposed codes, and broadcasting on unknown radio networks. In: SODA 2001, pp. 709–718 (2001)Google Scholar
  9. 9.
    Czumaj, A., Rytter, W.: Broadcasting algorithms in radio networks with unknown topology. In: FOCS, pp. 492–501. IEEE Computer Society (2003)Google Scholar
  10. 10.
    Daum, S., Gilbert, S., Kuhn, F., Newport, C.: Broadcast in the ad hoc SINR model. In: Afek, Y. (ed.) DISC 2013. LNCS, vol. 8205, pp. 358–372. Springer, Heidelberg (2013). CrossRefGoogle Scholar
  11. 11.
    De Marco, G.: Distributed broadcast in unknown radio networks. SIAM J. Comput. 39(6), 2162–2175 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Emek, Y., Gasieniec, L., Kantor, E., Pelc, A., Peleg, D., Su, C.: Broadcasting in UDG radio networks with unknown topology. Distr. Comput. 21(5), 331–351 (2009)CrossRefzbMATHGoogle Scholar
  13. 13.
    Goussevskaia, O., Moscibroda, T., Wattenhofer, R.: Local broadcasting in the physical interference model. In: DIALM-POMC 2008, pp. 35–44. ACM (2008)Google Scholar
  14. 14.
    Halldórsson, M.M., Holzer, S., Lynch, N.A.: A local broadcast layer for the SINR network model. In: PODC 2015, ADM, pp. 129–138 (2015)Google Scholar
  15. 15.
    Halldórsson, M.M., Mitra, P.: Nearly optimal bounds for distributed wireless scheduling in the SINR model. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6756, pp. 625–636. Springer, Heidelberg (2011). CrossRefGoogle Scholar
  16. 16.
    Halldórsson, M.M., Mitra, P.: Towards tight bounds for local broadcasting. In: Kuhn, F., Newport, C.C. (eds.) FOMC, p. 2. ACM (2012)Google Scholar
  17. 17.
    Halldórsson, M.M., Tonoyan, T.: How well can graphs represent wireless interference? In: STOC 2015, pp. 635–644 (ACM)Google Scholar
  18. 18.
    Hobbs, N., Wang, Y., Hua, Q.-S., Yu, D., Lau, F.C.M.: Deterministic distributed data aggregation under the SINR model. In: Agrawal, M., Cooper, S.B., Li, A. (eds.) TAMC 2012. LNCS, vol. 7287, pp. 385–399. Springer, Heidelberg (2012). CrossRefGoogle Scholar
  19. 19.
    Jurdzinski, T., Kowalski, D.R.: Distributed backbone structure for algorithms in the SINR model of wireless networks. In: Aguilera, M.K. (ed.) DISC 2012. LNCS, vol. 7611, pp. 106–120. Springer, Heidelberg (2012). CrossRefGoogle Scholar
  20. 20.
    Jurdzinski, T., Kowalski, D.R.: Distributed randomized broadcasting in wireless networks under the SINR model. In: Kao, M.-Y. (ed.) Encyclopedia of Algorithms, pp. 577–580. Springer, New York (2016). CrossRefGoogle Scholar
  21. 21.
    Jurdzinski, T., Kowalski, D.R., Rozanski, M., Stachowiak, G.: Distributed randomized broadcasting in wireless networks under the SINR model. In: Afek, Y. (ed.) DISC 2013. LNCS, vol. 8205, pp. 373–387. Springer, Heidelberg (2013). CrossRefGoogle Scholar
  22. 22.
    Jurdzinski, T., Kowalski, D.R., Rozanski, M., Stachowiak, G.: On the impact of geometry on ad hoc communication in wireless networks. In: PODC 2014, pp. 357–366. ACM (2014)Google Scholar
  23. 23.
    Jurdzinski, T., Kowalski, D.R., Stachowiak, G.: Distributed deterministic broadcasting in uniform-power ad hoc wireless networks. In: Gąsieniec, L., Wolter, F. (eds.) FCT 2013. LNCS, vol. 8070, pp. 195–209. Springer, Heidelberg (2013). CrossRefGoogle Scholar
  24. 24.
    Jurdzinski, T., Kowalski, D.R., Stachowiak, G.: Distributed deterministic broadcasting in wireless networks of weak devices. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013. LNCS, vol. 7966, pp. 632–644. Springer, Heidelberg (2013). CrossRefGoogle Scholar
  25. 25.
    Kantor, E., Lotker, Z., Parter, M., Peleg, D.: The minimum principle of SINR: a useful discretization tool for wireless communication. In: FOCS 2015, pp. 330–349. IEEE (2015)Google Scholar
  26. 26.
    Kantor, E., Lotker, Z., Parter, M., Peleg, D.: The topology of wireless communication. J. ACM 62(5), 37:1–37:32 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Kesselheim, T.: A constant-factor approximation for wireless capacity maximization with power control in the SINR model. In: SODA 2011, pp. 1549–1559. SIAM (2011)Google Scholar
  28. 28.
    Kesselheim, T.: Dynamic packet scheduling in wireless networks. In: PODC 2012, pp. 281–290. ACM (2012)Google Scholar
  29. 29.
    Kesselheim, T., Vöcking, B.: Distributed contention resolution in wireless networks. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 163–178. Springer, Heidelberg (2010). CrossRefGoogle Scholar
  30. 30.
    Kowalski, D.R.: On selection problem in radio networks. In: PODC 2005, pp. 158–166. ACM (2005)Google Scholar
  31. 31.
    Kowalski, D.R., Moses Jr., W.K., Vaya, S.: Deterministic backbone creation in an SINR network without knowledge of location. CoRR, abs/1702.02460 (2017)Google Scholar
  32. 32.
    Kowalski, D.R., Pelc, A.: Broadcasting in undirected ad hoc radio networks. In: PODC 2003, pp. 73–82. ACM (2003)Google Scholar
  33. 33.
    Kowalski, D.R., Pelc, A.: Faster deterministic broadcasting in ad hoc radio networks. SIAM J. Discrete Math. 18(2), 332–346 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Kowalski, D.R., Pelc, A.: Time of deterministic broadcasting in radio networks with local knowledge. SIAM J. Comput. 33(4), 870–891 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Kushilevitz, E., Mansour, Y.: An \(\varOmega (D Log(N/D))\) lower bound for broadcast in radio networks. In: PODC 1993, pp. 65–74. ACM (1993)Google Scholar
  36. 36.
    Moscibroda, T., Wattenhofer, R.: The complexity of connectivity in wireless networks. In: INFOCOM 2006. IEEE (2006)Google Scholar
  37. 37.
    Yu, D., Hua, Q., Wang, Y., Lau, F.C.M.: An o(log n) distributed approximation algorithm for local broadcasting in unstructured wireless networks. In: DCOSS 2012, pp. 132–139. IEEE (2012)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Tomasz Jurdzinski
    • 1
    Email author
  • Michal Rozanski
    • 1
  • Grzegorz Stachowiak
    • 1
  1. 1.Institute of Computer ScienceUniversity of WrocławWrocławPoland

Personalised recommendations