Skip to main content

Molecular and Cellular Toxicology of Nanomaterials with Related to Aquatic Organisms

  • Chapter
  • First Online:
Book cover Cellular and Molecular Toxicology of Nanoparticles

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1048))

Abstract

The increasing application of nanomaterials both in commercial and industrial products has led their accumulation in the aquatic ecosystem. The rapid development and large scale production of nanomaterials in the last few decades have stimulated concerns regarding their potential environmental health risks on aquatic biota. Inorganic nanoparticles, due to their unique properties and associated material characteristics resulted in toxicity of these nanomaterials in aquatic organisms. Understanding their novel properties at nanoscale has established to be a significant aspect of their toxicity. Unique properties such as size, surface area, surface coating, surface charge, aggregation of particles and dissolution may affect cellular uptake, molecular response, in vivo reactivity and delivery across tissues of living organism. Already lot of research in the past three or four decades within the nano-ecotoxicology field had been carried out. However, there is not any standard technique yet to assess toxicity of nanoparticles (NPs) on different biological systems such as reproductive, respiratory, nervous, gastrointestinal systems, and development stages of aquatic organisms. Specific toxicological techniques and quantification of nanoparticles are vital to establish regulations to control their impact on the aquatic organism and their release in the aquatic environment. The main aim of this chapter is to critically evaluate the current literature on the toxicity of nanomaterials on aquatic organism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Navalakhe RM, Nandedkar TD (2007) Application of nanotechnology in biomedicine. Ind J ExpBiol 45:160–165

    CAS  Google Scholar 

  2. Bhushan B (2010) Introduction of nanotechnology (ed) Handbook of nanotechnology, XLVIII. Springer, p 1964

    Google Scholar 

  3. NANOFORUM (2006) Nanotechnology in consumer products. Nanoforum Report. Eur Nanotechnol Gateway

    Google Scholar 

  4. Silva GA (2006) Neuroscience nanotechnology: progress, opportunities and challenges. Nat Rev Neurosci 7:65–74

    Article  CAS  PubMed  Google Scholar 

  5. Feynman R (1960) There’s plenty of room at the bottom: an invitation to enter a new field of physics. Eng Sci 23(5):22–36

    Google Scholar 

  6. Taniguchi N (1974) On the basic concept of nanotechnology. In: Proceedings of the international congress on Prod Eng. JSPE, Tokyo, Japan, pp 457–462

    Google Scholar 

  7. Peterson CI (2004) Nanotechnology: from feynman to the grand challenge of molecular manufacturing. IEEE technology and society magazine, winter

    Google Scholar 

  8. Boxall ABA, Chaudhry Q, Sinclair C et al (2007) Current and future predicted environmental exposure to manufactured nanoparticles. Report by the Central Science Laboratory (CSL) York for the Department of the Environment and Rural Affairs (DEFRA), UK

    Google Scholar 

  9. Stone V, Nowack B, Baun A et al (2010) Nanomaterials for environmental studies: classification, reference material issues, and strategies for physico-chemical characterisation. Sci Total Environ 408:1745–1754

    Article  CAS  PubMed  Google Scholar 

  10. Sun H, Choy TS, Zhu DR et al (2009) Nano-silver-modified PQC/DNA biosensor for detecting E. coli in environmental water. Biosens Bioelectron 24:1405–1410

    Article  CAS  PubMed  Google Scholar 

  11. Kirkpatrick CJ, Bonfield W (2010) NanoBioInterface: a multidisciplinary challenge. J R Soc Interface 7:S1–S4

    Article  PubMed  Google Scholar 

  12. Yang Z, Liu ZW, Allaker RP et al (2010) A review of nanoparticle functionality and toxicity on the central nervous system. J R Soc Interface 7:S411–S422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rather M, Sharma R, Aklakur M et al (2011) Nanotechnology: a novel tool for aquaculture and fisheries development. A prospective mini-review. Fish Aquacult J 16:1–5

    Google Scholar 

  14. Ferosekhan S, Gupta S, Singh RA et al (2014) RNA-loaded chitosan nanoparticles for enhanced growth, immunostimulation and disease resistance in fish. Curr Nanosci 10(3):453–464

    Article  CAS  Google Scholar 

  15. Aklakur M, Rather MA, Kumar N (2015) Nanodelivery: an emerging avenue for nutraceuticals and drug delivery. Crit Rev Food Sci Nutr 56(14):2352–2361

    Article  CAS  Google Scholar 

  16. Bullock G, Blazer V, Tsukuda S et al (2000) Toxicity of acidified chitosan for cultured rainbow trout (Oncorhynchus mykiss). Aquaculture 185:273–280

    Article  CAS  Google Scholar 

  17. Hu YL, Qi W, Han F et al (2011) Toxicity evaluation of biodegradable chitosan nanoparticles using a zebrafish embryo model. Int J Nanomedicine 6:3351–3359

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Rafiee A, Alimohammadian MH, Gazori T et al (2014) Comparison of chitosan, alginate and chitosan/alginate nanoparticles with respect to their size, stability, toxicity and transfection. Asian Pac J Trop Dis 4(5):372–377

    Article  CAS  Google Scholar 

  19. Krishnaraj C, Harper SL, Yun SI (2015) In vivo toxicological assessment of biologically synthesized silver nanoparticles in adult zebrafish (Danio rerio). J Hazard Mater 301:480–491

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Osborne OJ, Lin S, Chang CH et al (2015) Organ-specific and size-dependent Ag nanoparticle toxicity in gills and intestines of adult zebrafish. ACS Nano 9(10):9573–9584

    Article  CAS  PubMed  Google Scholar 

  21. Bilberg K, Malte H, Wang T et al (2010) Silver nanoparticles and silver nitrate cause respiratory stress in Eurasian perch (Percafluviatilis). Aquat Toxicol 96:159–165

    Article  CAS  PubMed  Google Scholar 

  22. Rajkumar KS, Kanipandian N, Thirumurugan R (2016) Toxicity assessment onhaemotology, biochemical and histopathological alterations of silver nanoparticles exposed freshwater fish Labeorohita. Appl Nanosci 6(1):19–29

    Article  CAS  Google Scholar 

  23. Sharma N, Rather MA, Ajima MNO et al (2016) Assessment of DNA damage and molecular responses in Labeorohita (Hamilton, 1822) following short-term exposure to silver nanoparticles. Food Chem Toxicol 96:122–132

    Article  CAS  PubMed  Google Scholar 

  24. Jang MH, Kim WK, Lee SK et al (2014) Uptake, tissue distribution, and depuration of total silver in common carp (Cyprinus carpio) after aqueous exposure to silver nanoparticles

    Google Scholar 

  25. Powers CM, Levin ED, Seidler FJ et al (2010) Silver exposure in developing zebrafish produces persistent synaptic and behavioral changes. Neurotoxicol Teratol 2:329–332

    Google Scholar 

  26. Laban G, Nies EL, Turco RF et al (2010) The effects of silver nanoparticles on fathead minnow (Pimephalespromelas) embryos. Ecotoxicology 19:185–195

    Article  CAS  PubMed  Google Scholar 

  27. Dedeh A, Ciutat A, Treguer-D M et al (2015) Impact of gold nanoparticles on zebrafish exposed to a spiked sediment. Nanotoxicology 9:71–80

    Article  CAS  PubMed  Google Scholar 

  28. Asharani PV, Wu YL, Gong Z (2008) Toxicity of silver nanoparticles in zebrafish models. Nanotechnology 19(25):255102

    Article  CAS  PubMed  Google Scholar 

  29. Hao L, Chen L, Hao J et al (2013) Bioaccumulation and sub-acute toxicity of zinc oxide nanoparticles in juvenile carp (Cyprinus carpio): a comparative study with its bulk counterparts. Ecotoxicol Environ Saf 91:52–60

    Article  CAS  PubMed  Google Scholar 

  30. Johnston BD et al (2010) Bioavailability of nanoscale metal oxides TiO2, CeO2, and ZnO to fish. Environ Sci Technol 44:1144–1151

    Article  CAS  PubMed  Google Scholar 

  31. Bai W, Zhang Z, Tian W et al (2010) Toxicity of zinc oxide nanoparticles to zebrafish embryo: a physicochemical study of toxicity mechanism. J Nanopart Res 12:1645–1654

    Article  CAS  Google Scholar 

  32. Chen PJ, Su CH, Tseng CY et al (2011) Toxicity assessments of nanoscalezerovalent iron and its oxidation products in medaka (Oryziaslatipes) fish. Mar Pollut Bull 63:339–346

    Article  CAS  PubMed  Google Scholar 

  33. Zhu X, Tian S, Cai Z (2012) Toxicity assessment of iron oxide nanoparticles in zebrafish (Danio rerio) early life stages. PLoS One 7(9):e46286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Karthikeyeni S, Vijayakumar S, Vasanth S et al (2013) Biosynthesis of iron oxide nanoparticles and its haematological effects on fresh water fish Oreochromismossambicus. J Acad Indus Res 10:645–649

    Google Scholar 

  35. Zhang W, Qiao X, Chen J (2007) Synthesis of nanosilver colloidal particles in water/oil microemulsion. Colloids Surf A Physicochem Eng Asp 299:22–28

    Article  CAS  Google Scholar 

  36. Clemente Z, Castro V, Moura M, Jonsson C, Fraceto L (2014) Toxicity assessment of TiO2 nanoparticles in zebrafish embryos under different exposure conditions. Aquat Toxicol 147:129–139

    Article  CAS  PubMed  Google Scholar 

  37. Smith CJ, Shaw BJ, Handy RD (2007) Toxicity of single walled carbon nanotubes to rainbow trout (Oncorhynchus mykiss): respiratory toxicity, organ pathologies, and other physiological effects. Aquat Toxicol 82:94–109

    Article  CAS  PubMed  Google Scholar 

  38. Louis S, Gagné F, Auclair J et al (2010) The characterisation of the behaviour and gill toxicity of CdS/CdTe quantum dots in rainbow trout (Oncorhynchusmykiss). Int J Biomed Nanosci Nanotechnol 1(1):52–69

    Article  Google Scholar 

  39. Gagne F, Auclair J, Turcotte P et al (2008) Ecotoxicity of CdTe quantum dots to freshwater mussels: impacts on immune system, oxidative stress and genotoxicity. Aquat Toxicol 86(3):333–340

    Article  CAS  PubMed  Google Scholar 

  40. Luna-Velasco A, Field JA, Cobo-Curiel A et al (2011) Inorganic nanoparticles enhance the production of reactive oxygen species (ros) during the autoxidation of L-3,4-dihydroxyphenylalanine (L-dopa). Chemosphere 85(1):19–25

    Article  CAS  PubMed  Google Scholar 

  41. Cho WS, Duffin R, Thielbeer F et al (2012) Zeta potential and solubility to toxic ions as mechanisms of lung inflammation caused by metal/metal oxide nanoparticles. Toxicol Sci 126(2):469–477

    Article  CAS  PubMed  Google Scholar 

  42. Fard JK, Jafari S, Eghbal MA (2015) A review of molecular mechanisms involved in toxicity of nanoparticles. Adv Pharm Bull 5:447–454

    Article  Google Scholar 

  43. Hutter E, Fendler JH (2004) Exploitation of localized surface plasmon resonance. Adv Mater 16:1685–1706

    Article  CAS  Google Scholar 

  44. Sudrik S, Chaki NK, Chavan VB et al (2006) Silver nanocluster redox-couple-promoted nonclassical electron transfer: an efficient electrochemical Wolff rearrangement of alpha-diazoketones. Chem Eur J12:859–864

    Article  CAS  Google Scholar 

  45. Choi Y, Ho N, Tung C (2007) Sensing phosphatase activity by using gold nanoparticles. Angew Chem Int Ed 46:707–709

    Article  CAS  Google Scholar 

  46. Fabrega J, Luoma SN, Tyler CR et al (2011) Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int 37:517–531

    Article  CAS  PubMed  Google Scholar 

  47. Kholoud MM, El-Nour A, Eftaiha A et al (2010) Synthesis and applications of silver nanoparticles. Arab J Chem 3:135–140

    Article  CAS  Google Scholar 

  48. Capek I (2004) Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions. Adv Colloid Interf Sci 110:49–74

    Article  CAS  Google Scholar 

  49. Frattini A, Pellegri N, Nicastro D et al (2005) Effect of amine groups in the synthesis of Ag nanoparticles using aminosilanes. Mater Chem Phys 94:148–152

    Article  CAS  Google Scholar 

  50. Arora S, Jain J, Rajwade JM et al (2009) Interactions of silver nanoparticles with primary mouse fibroblasts and liver cells. Toxicol Appl Pharm 236:310–318

    Article  CAS  Google Scholar 

  51. Cohen MS, Stern JM, Vanni AJ et al (2007) In vitro analysis of a nanocrystalline silver-coated surgical mesh. Surg Infect 8:397–403

    Article  Google Scholar 

  52. Lee HY, Park HK, Lee YM et al (2007) A practical procedure for producing silver nanocoated fabric and its antibacterial evaluation for biomedical applications. Chem Commun (Camb) 28:2959–2961

    Article  CAS  Google Scholar 

  53. Cheng D, Yang J, Zhao Y (2004) Antibacterial materials of silver nanoparticles application in medical appliances and appliances for daily use. Chin Med Equip J4:26–32

    Google Scholar 

  54. Jain P, Pradeep T (2005) Potential of silver nanoparticle coated polyurethane foam as an antibacterial water filter. Inter science. Biotechnol Bioeng 90:59–63

    Article  CAS  PubMed  Google Scholar 

  55. Zhang Y, Sun J (2007) A Study on the bio-safety for nano-silver as anti-bacterial materials. Chin J Med Instrumen 31:35–38

    CAS  Google Scholar 

  56. Purcell TW, Peters JJ (1998) Sources of silver in the environment. Environ Toxicol Chem 17:539–546

    Article  CAS  Google Scholar 

  57. Sanudo-Willhelmy S, Flegal R (1992) Anthropogenic silver in the Southern California bight: a new tracer of sewage in coastal waters. Environ Sci Technol 26:2147–2151

    Article  Google Scholar 

  58. Benn TM, Westerhoff P (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42:4133–4139

    Article  CAS  PubMed  Google Scholar 

  59. Geranio L, Heuberger M, Nowack B (2009) The behavior of silver nanotextiles during washing. Environ SciTechnol 43:8113–8118

    Article  CAS  Google Scholar 

  60. Gottschalk F, Sonderer T, Scholz RW et al (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43:9216–9222

    Article  CAS  PubMed  Google Scholar 

  61. Ratte HT (1999) Bioaccumulation and toxicity of silver compounds: a review. Environ Toxicol Chem 18:89–108

    Article  CAS  Google Scholar 

  62. Luoma SN, Ho YB, Bryan GW (1995) Fate, bioavailability and toxicity of silver in estuarine environments. Mar Pollut Bull 31:44–54

    Article  CAS  Google Scholar 

  63. Adams NWH, Kramer JR (1998) Reactivity of Ag+ ion with thiol ligands in the presence of iron sulfide. Environ Toxicol Chem 17:625–629

    Article  CAS  Google Scholar 

  64. Erickson RJ, Brooke LT, Kahl MD et al (1998) Effects of laboratory test conditions on the toxicity of silver to aquatic organisms. Environ Toxicol Chem 17:572–578

    Article  CAS  Google Scholar 

  65. Levard C, Hotze EM, Lowry GV et al (2012) Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environ Sci Technol 46:6900–6914

    Article  CAS  PubMed  Google Scholar 

  66. Dale AL, Lowry GV, Casman EA (2013) Modeling nanosilver transformations in freshwater sediments. Environ Sci Technol 47:122920–122928

    Google Scholar 

  67. Quik JTK, Stuart MC, Wouterse M et al (2012) Natural colloids are the dominant factor in the sedimentation of nanoparticles. Environ Toxicol Chem 2012(31):1019–1022

    Article  CAS  Google Scholar 

  68. Kohler AR, Som C, Helland A et al (2008) Studying the potential release of carbon nanotubes throughout the application life cycle. J Clean Prod 16:927–937

    Article  Google Scholar 

  69. Luoma SN, Rainbow PS (2008) Metal contamination in aquatic environments: science and lateral management. Cambridge University Press, Cambridge

    Google Scholar 

  70. Luoma SN, Rainbow PS (2005) Why is metal bioaccumulation so variable? Biodynamics as a unifying concept. Environ Sci Technol 39:1921–1931

    Article  CAS  PubMed  Google Scholar 

  71. Wood CM, Hogstrand C, Galvez F et al (1996) The physiology of waterborne silver toxicity in freshwater rainbow trout (Oncorhynchusmykiss). The effects of ionic Ag+. Aquat Toxicol 35:93–109

    Article  CAS  Google Scholar 

  72. Zhou B, Nichols J, Playle RC et al (2005) An in vitro biotic ligand model (BLM) for silver binding to cultured gill epithelia of freshwater rainbow trout (Oncorhynchusmykiss). Toxicol Appl Pharmacol 202:25–37

    Article  CAS  PubMed  Google Scholar 

  73. Birge W, Zuiderveen J (1995) The comparative toxicity of silver to aquatic biota. In: Proceedings, 3rd argentum international conference on the transport, fate, and effects of silver in the environment, Washington DC, pp 99–108

    Google Scholar 

  74. Hogstrand C, Wood CM (1998) Toward a better understanding of the bioavailability, physiology and toxicity of silver in fish: implications for water quality criteria. Environ Toxicol Chem 17:547–561

    Article  CAS  Google Scholar 

  75. Grosell M, De Boeck G, Johannsson O et al (1999) The effects of silver on intestinal ion and acid–base regulation in the marine teleost fish, Papophrysvetulus. Comp Biochem Physiol C Toxicol Pharmacol 124:259–270

    CAS  Google Scholar 

  76. Yeo MK, Kang M (2008) Effects of nanometer sized silver materials on biological toxicity during zebrafish embryogenesis. Bull Korean Chem Soc 29:1179–1184

    Article  CAS  Google Scholar 

  77. Scown TM, Santos ME, Johnston BD (2010) Effects of aqueous exposure to silver nanoparticles of different sizes in rainbow trout. Toxicol Sci 115:521–534

    Article  CAS  PubMed  Google Scholar 

  78. Ringwood AH, McCarthy M, Bates TC et al (2010) The effects of silver nanoparticles on oyster embryos. Mar Environ Res 69:549–551

    Article  CAS  Google Scholar 

  79. Wu Y, Zhou Q, Li H et al (2010) Effects of silver nanoparticles on the development and histopathology biomarkers of Japanese medaka (Oryziaslatipes) using the partial-life test. Aquat Toxicol 100:160–167

    Article  CAS  PubMed  Google Scholar 

  80. Farkas J, Christian P, Urrea JAG et al (2010) Effects of silver and gold nanoparticles on rainbow trout (Oncorhynchusmykiss) hepatocytes. Aquat Toxicol 96(1):44–52

    Article  CAS  PubMed  Google Scholar 

  81. Choi JE, Kim S, Ahn JH et al (2010) Induction of oxidative stress and apoptosis by silver nanoparticles in the liver of adult zebrafish. Aquat Toxicol 100:151–159

    Article  CAS  PubMed  Google Scholar 

  82. Bilberg K, Hovgaard MB, Besenbacher F et al (2012) In vivo toxicity of silver nanoparticles and silver ions in Zebra fish (Daniorerio). J Toxicol 29:1–9

    Article  CAS  Google Scholar 

  83. Rayner TA, Mackevica A, Wejdling A et al (2010) Uptake and toxicity of silver ions, nanoparticals and microparticles in NereisVirens in a sediment environment project spring

    Google Scholar 

  84. Zhang R, Piao JM, Kim CK et al (2012) Endoplasmic reticulum stress signalling is involved in silver nanoparticles-induced apoptosis. Int J Biochem Cell Biol 44:224–234

    Article  CAS  PubMed  Google Scholar 

  85. Sanford RV (2010) State of the science literature review: everything nanosilver and more. In: Varner K (ed) Scientific, technical, research, engineering, and modeling support final report. US Environmental Protection Agency, Office of Research and Development, Washington DC, pp 1–197

    Google Scholar 

  86. Reidy B, Haase A, Luch A et al (2013) Mechanisms of silver nanoparticle release, transformation and toxicity: a critical review of current knowledge and recommendations for future studies and applications. Materials 6:2295–2350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Roh JY, Sim SJ, Yi J et al (2009) Ecotoxicity of silver nanoparticles on the soil nematode Caenorhabditis elegans using functional ecotoxicogenomics. Environ Sci Technol 43:3933–3940

    Article  CAS  PubMed  Google Scholar 

  88. Gopinath P, Gogoi SK, Sanpuic P et al (2010) Signaling gene cascade in silver nanoparticle induced apoptosis. Colloids Surf B Biointerfaces 77:240–245

    Article  CAS  PubMed  Google Scholar 

  89. Van Aerle R, Lange A, Moorhouse A et al (2013) Molecular mechanisms of toxicity of silver nanoparticles in zebrafish embryos. Environ Sci Technol 47:8005–8014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Hughes GA (2005) Nanostructure-mediated drug delivery. Nanomedicine 1(1):22–30

    Article  CAS  PubMed  Google Scholar 

  91. Joshi H, Shirude PS, Bansal V et al (2004) Isothermal titration calorimetry studies on the binding of amino acids to gold nanoparticles. J Phys Chem B 108(31):11535–11540

    Article  CAS  Google Scholar 

  92. Shukla R, Bansal V, Chaudhary M et al (2005) Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir 21(23):10644–10654

    Article  CAS  PubMed  Google Scholar 

  93. Unfried K, Albrecht C, Klotz LO et al (2007) Cellular responses to nanoparticles: target structures and mechanisms. Nanotoxicology 1(1):52–71

    Article  CAS  Google Scholar 

  94. Aillon KL, Xie Y, El-Gendy N et al (2009) Effects of nanomaterial physicochemical properties on in vivo toxicity. Adv Drug Deliv Rev 61(6):457–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Pan Y, Leifert A, Ruau D et al (2009) Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small 5(18):2067–2076

    Article  CAS  PubMed  Google Scholar 

  96. Truong L, Zaikova T, Richman EK et al (2012) Media ionic strength impacts embryonic responses to engineered nanoparticle exposure. Nanotoxicology 6(7):691–699

    Article  CAS  PubMed  Google Scholar 

  97. Tedesco S, Doyle H, Redmond G et al (2008) Gold nanoparticles and oxidative stress in Mytilus edulis. Mar Environ Res 66:131–133

    Article  CAS  PubMed  Google Scholar 

  98. García-Negrete CA, Blasco J, Volland M et al (2013) Behaviour of Au-citrate nanoparticles in seawater and accumulation in bivalves at environmentally relevant concentrations. Environ Pollut 174:134–141

    Article  PubMed  CAS  Google Scholar 

  99. Bar-Ilan O, Albrecht RM, Fako VE et al (2009) Toxicity assessments of multisized gold and silver nanoparticles in zebrafish embryos. Small 5(16):1897–1910

    Article  CAS  PubMed  Google Scholar 

  100. Joubert Y, Pan JF, Buffet PE et al (2013) Subcellular localization of gold nanoparticles in the estuarine bivalve Scrobiculariaplana after exposure through the water. Gold Bull 46(1):47–56

    Article  CAS  Google Scholar 

  101. Ashoori RC (1996) Electrons in artificial atoms. Nature 379(6564):413–419

    Article  CAS  Google Scholar 

  102. Collier CP, Vossmeyer T, Heath JR (1998) Nanocrystal super lacttices. Annu Rev Phys Chem 49:371

    Article  CAS  PubMed  Google Scholar 

  103. Carrillo C, Moliner CM, Simonet Y et al (2011) Capillary electrophoresis method for the characterization and separation of CdSe quantum dots. Anal Chem 83(7):2807–2813

    Article  CAS  Google Scholar 

  104. Coe-Sullivan S, Steckel JS, Woo WK et al (2005) Large-area ordered quantum-dot monolayers via phase separation during spin-casting. Adv Funct Mater 15(7):1117–1124

    Article  CAS  Google Scholar 

  105. Feswick A, Griffitt RJ, Siebein K (2013) Uptake, retention and internalization of quantum dots in Daphnia is influenced by particle surface functionalization. Aquat Toxicol 130:210–218

    Article  PubMed  CAS  Google Scholar 

  106. Lewinski NA, Zhu H, Ouyang CR et al (2011) Trophic transfer of amphiphilic polymer coated CdSe/ZnS quantum dots to Daniorerio. Nanoscale 3:3080–3083

    Article  CAS  PubMed  Google Scholar 

  107. Guo H, Hong Z, Yi R (2015) Core-shell collagen peptide chelated calcium/calcium alginate nanoparticles from fish scales for calcium supplementation. J Food Sci 80:41–50

    Google Scholar 

  108. Kim J, Park Y, Yoon TH et al (2010) Phototoxicity of CdSe/ZnSe quantum dots with surface coatings of 3-mercaptopropionic acid or tri-n-octylphosphine oxide/gum arabic in Daphniamagna under environmentally relevant UV-B light. Aquat Toxicol 97:116–124

    Article  CAS  PubMed  Google Scholar 

  109. Cibulskaite Z, Kazlauskienė N, Rotomskis R et al (2015) Toxicity of quantum dots and cadmium to rainbow trout (Oncorhynchusmykiss) in early ontogenesis. In: Front Mar Sci conference abstract: XV European Congress of Ichthyology. https://doi.org/10.3389/conf.FMARS.2015.03.0019

  110. Chen N, He Y, Su Y et al (2012) The cytotoxicity of cadmium-based quantum dots. Biomaterials 33:1238–1244

    Article  CAS  PubMed  Google Scholar 

  111. Singh BR, Singh BN, Khan W et al (2012) ROS-mediated apoptotic cell death in prostate cancer LNCaP cells induced by biosurfactant stabilized CdS quantum dots. Biomaterials 33:5753–5767

    Article  CAS  PubMed  Google Scholar 

  112. Zhang WX (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5(3/4):323–332

    Article  CAS  Google Scholar 

  113. Remya AS, Ramesh M, Saravanan M et al (2015) Iron oxide nanoparticles to an Indian major carp, Labeorohita: impacts on hematology, iono regulation and gill Na+/K+ ATPase activity. J King Saud Uni-Sci 27(2):151–160

    Article  Google Scholar 

  114. Buffet PE, Tankoua OF, Pan JF et al (2013) Behavioural and biochemical responses of two marine invertebrates Scrobiculariaplanaand Hedistediversicolor to copper oxide nanoparticles. Chemosphere 84:166–174

    Article  CAS  Google Scholar 

  115. Song L, Vijver MG, Peijnenburg WJ et al (2015) A comparative analysis on the in vivo toxicity of copper nanoparticles in three species of freshwater fish. Chemosphere 139:181–189

    Article  CAS  PubMed  Google Scholar 

  116. Zhao J, Wang Z, Liu X et al (2011) Distribution of CuO nanoparticles in juvenile carp (Cyprinuscarpio) and their potential toxicity. J Hazard Mater 197:304–310

    Article  CAS  PubMed  Google Scholar 

  117. Chen TH, Lin CC, Meng PJ (2014) Zinc oxide nanoparticles alter hatching and larval locomotor activity in zebrafish (DanioRerio). J Hazard Mater 277(30):134–134

    Article  CAS  PubMed  Google Scholar 

  118. Faiz H, Zuberi A, Nazir S et al (2015) Zinc oxide, zinc sulfate and zinc oxide nanoparticles as source of dietary zinc: comparative effects on growth and hematological indices of Juvenile Grass Carp (Ctenopharyngodonidella). Int J Agric Biol 17:568–574

    Article  CAS  Google Scholar 

  119. Abdel-Khalek A, Kadry M, Hamed A et al (2015) Ecotoxicological impacts of zinc metal in comparison to its nanoparticles in Nile tilapia; Oreochromisniloticus. J Basic Appl Zool 72:113–125

    Article  CAS  Google Scholar 

  120. Moghimi SM, Hunter AC, Murray JC (2001) Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 53:283–318

    CAS  PubMed  Google Scholar 

  121. Rather MA, Bhat IA, Gireesh-Babu P et al (2016) Molecular characterization of kisspeptin gene and effect of nano–encapsulted kisspeptin-10 on reproductive maturation in Catlacatla. Domes Anim Endocrinol 56:36–47

    Article  CAS  Google Scholar 

  122. Jain RA (2000) The manufacturing techniques of various drug loaded biodegradable poly (lactide-co-glycolide) (PLGA) devices. Biomaterials 21(23):2475–2490

    Article  CAS  PubMed  Google Scholar 

  123. Hejazi R, Amiji M (2003) Chitosan-based gastrointestinal delivery systems. J Control Release 89:151–165

    Article  CAS  PubMed  Google Scholar 

  124. Rather MA, Sharma R, Gupta S et al (2013) Chitosan-nanoconjugated hormone nanoparticles for sustained surge of gonadotropins and enhanced reproductive output in female fish. PLoS One 8:e57094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Bhat IA, Rather MA, Saha R et al (2016) Expression analysis of Sox9 genes during annual reproductive cycles in gonads and after nanodelivery of LHRH in Clariasbatrachus. Res Vet Sci 106:100–106

    Article  CAS  PubMed  Google Scholar 

  126. Rajeshkumar S, Venkatesan C, Sarathi M et al (2009) Oral delivery of DNA construct using chitosan nanoparticles to protect the shrimp from white spot syndrome virus (WSSV). Fish Shellfish Immunol 26:429–437

    Article  CAS  PubMed  Google Scholar 

  127. Ramya VL, Sharma R, Gireesh-Babu P et al (2014) Development of chitosan conjugated DNA vaccine against nodavirus in Macrobrachium rosenbergii (De Man, 1879). J Fish Dis 37:815–824

    Article  CAS  PubMed  Google Scholar 

  128. Gentile P, Chiono V, Carmagnola I et al (2014) An overview of poly (lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int J Mol Sci 15(3):3640–3659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Panyam J, Labhasetwar V (2003) Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 55:329–347

    Article  CAS  PubMed  Google Scholar 

  130. George M, Abraham TE (2006) Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan-a review. J Control Release 114:1–14

    Article  CAS  PubMed  Google Scholar 

  131. Klinkesorn U, McClements DJ (2009) Influence of chitosan on stability and lipase digestibility of lecithin-stabilized tuna oil-in-water emulsions. Food Chem 114:1308–1315

    Article  CAS  Google Scholar 

  132. Polk AE, Amsden B, Scarratt DJ et al (1994) Oral delivery in aquaculture: controlled release of proteins from chitosan-alginate microcapsules. Aquacult Eng 13(4):311–323

    Article  Google Scholar 

  133. RosasLedesma P, LeónRubio JM, Alarcón FJ et al (2012) Calcium alginate capsules for oral administration of fish probiotic bacteria: assessment of optimal conditions for encapsulation. Aquac Res 43(1):106–116

    Article  CAS  Google Scholar 

  134. Shugart LR, Theodorakis CW (1998) New trends in biological monitoring: application of biomarkers to genetic ecotoxicology. Biotherapy 11:119–127

    Article  CAS  PubMed  Google Scholar 

  135. Belfiore NM, Anderson SL (1998) Genetic patterns as a tool for monitoring and assessment of environmental aspects: the example of genetic toxicology. Environ Monit Assess 51:465–479

    Article  Google Scholar 

  136. Wurgler FE, Kramers PGN (1992) Environment effects of genotoxins (ecogenotoxicology). Mutagenesis 7:321–341

    Article  CAS  PubMed  Google Scholar 

  137. Anderson SL, Sadinski WJ, Shugart LBP et al (1994) Genetic and molecular ecogenotoxicology: a research framework. Environ Health Perspect 102:9–12

    Article  PubMed  PubMed Central  Google Scholar 

  138. Kohn HW (1983) The significance of DNA-damage assays in toxicity andcarcinogenecity assessment. Ann N Y Acad Sci 407:106–118

    Article  CAS  PubMed  Google Scholar 

  139. Shugart LR (1990) DNA damage as an indicator of pollutant-induced genotoxicity. In: Landis WG, van der Schalie WH (eds) 13th symposium on aquatic toxicology and risk assessment: sublethal indicators of toxic stress. ASTM, Philadelphia, pp 348–355

    Google Scholar 

  140. Shugart LR, Theodorakis CW (1994) Environmental genotoxicity: probing the underlying mechanisms. Environ Health Perspect 102:13–17

    Article  PubMed  PubMed Central  Google Scholar 

  141. Chandler GT, Coull BC, Schizas NV et al (1997) A culturebased assessment of the effects of Chlorpyrifos on multiple meiobenthic copepods using microcosms of intact estuarine sediments. Environ Toxicol Chem 16:2339–2346

    Article  CAS  Google Scholar 

  142. Kovatch CE, Chandler GT, Coull BC (1999) Utility of a full lifecycle copepod bioassay approach for assessment of sediment- associated contaminant mixtures. Mar Pollut Bull 38:692–701

    Article  CAS  Google Scholar 

  143. Dixon DR, Pruski AM, Dixon LRJ et al (2002) Marine invertebrate eco-genotoxicology: a methodological overview. Mutagen 17:495–507

    Article  CAS  Google Scholar 

  144. Obiakor MO, Okonkwo JC, Nnabude PC et al (2012) Ecogenotoxicology: micronucleus assay in fish erythrocytes as in situ aquatic pollution biomarker: a review. J Anim Sci Adv 2:123–133

    Google Scholar 

  145. Hartmann A, Golet EM, Gartiser S et al (1999) Primary DNA damage but not mutagenicity correlates with ciprofloxacin concentrations in German hospital waste waters. Arch Environ Contam Toxicol 36:115–119

    Article  CAS  PubMed  Google Scholar 

  146. Vargas VM, Migliavacca SB, de Melo AO et al (2001) Genotoxicity assessments in aquaticenvironments under the influence of heavy metals and organic contaminants. Mutat Res 490:141–158

    Article  CAS  PubMed  Google Scholar 

  147. Mitchelmore CL, Chipman JK (1998) DNA strand breakage in aquatic organisms and the potential value of the comet assay in environmental monitoring. Mutat Res 399:135–147

    Article  CAS  PubMed  Google Scholar 

  148. Harvey JS, Lyons BP, Waldock M et al (1997) The application ofthe 32P-post labeling assay to aquatic monitoring. Mutat Res 378:77–88

    Article  CAS  PubMed  Google Scholar 

  149. El Adlouni C, Tremblay J, Walsh P et al (1995) Comparative study of DNA adducts levels in white sucker fish (Catostomuscommersoni) from the basin of the St. Lawrence River (Canada). Mol Cell Biochem 148:133–138

    Article  PubMed  Google Scholar 

  150. Erickson G, Larsson A (2000) DNA adducts in perch (Percafluviatilis) living in coastal water polluted with bleached pulp mill effluents. Ecotoxicol Environ Saf 46:167–173

    Article  CAS  Google Scholar 

  151. Saotome K, Hayashi M (2003) Application of a sea urchin micronucleus assay to monitoring aquatic polllution: influence of sample osmolality. Mutagen 18:73–76

    Article  CAS  Google Scholar 

  152. Pantaleao SM, Alcantara AV, Alves JP et al (2006) The piscine micronucleus test to assess the impact of pollution on the Japaratuba River in Brazil. Environ Mutagen 47:219–224

    Article  CAS  Google Scholar 

  153. Flora S, Vigario LD, Agostini F et al (1993) Multiple biomarkers in fish exposed in situ to polluted river water. Mutat Res 319:167–177

    Article  PubMed  Google Scholar 

  154. Jacobsen NR, Saber AT, White P et al (2007) Increased mutant frequency by carbon black, but not quartz, in the lacZ and cII transgenes of muta mouse lung epithelial cells. Environ Mol Mutagen 48:451–461

    Article  CAS  PubMed  Google Scholar 

  155. Vandghanooni S, Eskandani M (2011) Comet assay: a method to evaluate genotoxicity of nano-drug delivery system. Bioimpacts 1:87–97

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Reeves JF, Davies SJ, Dodd NJF et al (2008) Hydroxyl radicals (•OH) are associated with titanium dioxide (TiO2) nanoparticle-induced cytotoxicity and oxidative DNA damage in fish cells. Mutat Res 640:113–122

    Article  CAS  PubMed  Google Scholar 

  157. Park SY, Choi J (2010) Geno- and ecotoxicity evaluation of silver nanoparticles in freshwater crustacean Daphnia magna. Environ Eng Res 15:23–27

    Article  Google Scholar 

  158. Flower NAL, Brabu B, Revathy M et al (2012) Characterization of synthesized silver nanoparticles and assessment of its genotoxicity potentials using the alkaline comet assay. Mutat Res 742:61–65

    Article  CAS  PubMed  Google Scholar 

  159. Silva J, de Freitas TRO, Marinho JR et al (2000) An alkaline single-cell gel electrophoresis (comet) assay for environmental biomonitoring with native rodents. Genet Mol Biol 23:241–245

    Article  Google Scholar 

  160. Wilson JT, Pascoe PL, Parry JM et al (1998) Evaluation of the comet assay as a method for the detection of DNA damage in the cells of a marine invertebrate, MytilusedulisL. (Mollusca: Pelecypoda). Mutat Res 399:87–95

    Article  CAS  PubMed  Google Scholar 

  161. Sasaki YF, Izumiyama F, Nishidate E et al (1997) Detection of genotoxicity of polluted sea water using shellf fish and the alkaline single-cell gel electrophoresis (SCE) assay: a preliminary study. Mut Res 393:133–139

    Article  CAS  Google Scholar 

  162. Nacci DE, Cayula S, Jackim E (1996) Detection of DNA damage in individual cells from marine organisms using the single cell gel assay. Aquat Toxicol 35:197–210

    Article  CAS  Google Scholar 

  163. Nwani CD, Lakra WS, Nagpure NS et al (2010) Mutagenic and genotoxic effects of carbosulfan in freshwater fish Channapunctatus (Bloch) using micronucleus assay and alkaline single-cell gel electrophoresis. Food Chem Toxicol 48:202–208

    Article  CAS  PubMed  Google Scholar 

  164. Ferraro MVM, Fenocchio AS, Mantovani MS et al (2004) Mutagenic effects of tributyltin and inorganic lead (Pb II) on the fish H.malabaricus as evaluated using the comet assay and the piscine micronucleus and chromosome aberration tests. Genet Mol Biol 27:103–107

    Article  CAS  Google Scholar 

  165. Matsumoto ST, Mantovani MS, Malaguttii MIA et al (2006) Genotoxicity and mutagenicity of water contaminated with tannery effluents, as evaluated by the micronucleus test and comet assay using the fish Oreochromisniloticusand chromosome aberrations in onion root-tips. Genet Mol Biol 29:148–158

    Article  CAS  Google Scholar 

  166. Ankley GT, Daston GP, Degitz SJ et al (2006) Toxicogenomics in regulatory ecotoxicology. Environ Sci Technol 40:4055–4065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Liu J, Maria B, Kadiiska MB et al (2001) Stress-related gene expression in mice treated with inorganic arsenicals. Toxicol Sci 61:314–320

    Article  CAS  PubMed  Google Scholar 

  168. Fujita K, Morimoto Y, Ogami A et al (2009) Gene expression profiles in rat lung after inhalation exposure to C60 fullerene particles. Toxicology 258:47–55

    Article  CAS  PubMed  Google Scholar 

  169. Park EJ, Choi J, Park YK et al (2008) Oxidative stress induced by cerium oxide nanoparticles in cultured BEAS-2B cells. Toxicology 245:90–100

    Article  CAS  PubMed  Google Scholar 

  170. Nair PMG, Park SY, Lee SW et al (2011) Differential expression of ribosomal protein gene, gonadotrophin releasing hormone gene and Balbiani ring protein gene in silver nanoparticles exposed Chironomusriparius. Aquat Toxicol 10:31–37

    Article  CAS  Google Scholar 

  171. Dua P, Chaudhari KN, Lee CH et al (2011) Evaluation of toxicity and gene expression changes triggered by oxide nanoparticles. Bull Kor Chem Soc 32:2051

    Article  CAS  Google Scholar 

  172. Olafson RW, McCubbin WD, Kay CM (1988) Primary- and secondarystructural analysis of a unique prokaryotic metallothionein from a Synechococcus sp. cyanobacterium. Biochem J 251:691–699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Chae YJ, Pham CH, Lee J et al (2009) Evaluation of the toxic impact of silver nanoparticles on Japanese medaka (Oryziaslatipes). Aquat Toxicol 94:320–327

    Article  CAS  PubMed  Google Scholar 

  174. Xu L, Takemura T, Xu M et al (2011) Toxicity of silver nanoparticles as assessed by global gene expression analysis. Mater Express 1:74–79

    Article  CAS  Google Scholar 

  175. Choi JS, Kim RO, Yoon S et al (2016) Developmental toxicity of zinc oxide nanoparticles to zebrafish (Daniorerio): a transcriptomic analysis. PloS ONE 11(8):e0160763

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Ashraf Rather .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rather, M.A., Bhat, I.A., Sharma, N., Sharma, R. (2018). Molecular and Cellular Toxicology of Nanomaterials with Related to Aquatic Organisms. In: Saquib, Q., Faisal, M., Al-Khedhairy, A., Alatar, A. (eds) Cellular and Molecular Toxicology of Nanoparticles. Advances in Experimental Medicine and Biology, vol 1048. Springer, Cham. https://doi.org/10.1007/978-3-319-72041-8_16

Download citation

Publish with us

Policies and ethics