Skip to main content

Detection of DNA Damage Induced by Cerium Dioxide Nanoparticles: From Models to Molecular Mechanism Activated

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1048))

Abstract

This chapter will present an original effort to summarize the relevant data about the cyto-genotoxicity induced by cerium dioxide nanoparticles (nanoceria) in physiologically (in vivo and in vitro) relevant models. In this way, this chapter should be extremely useful to everyone who wants to plan their research and publishing their results. Massive application of nanoceria at different fields is increasing year after year, and it is urgent to address and discuss their use and its safety-related issues. Specifically, the nanoceria are being designed for nanomedicine, cosmetics, polishing materials and additives for automotive fuels. Their unique properties include the ability to absorb UV radiation, antioxidant potential and the rapid exchange of valence between Ce4+ and Ce3+ ions associated to oxygen storage. In this chapter, the state of the art regarding the physicochemical properties of nanoceria, nanogenotoxicity detected by in vitro and in vivo systems and the general aspects in the cyto-genotoxic mechanism of nanoceria are summarized. The cyto-genotoxicity will be discussed in terms of evaluations by Comet assay, Micronucleus test, DNA damage response and oxidative stress detected in cell culture systems and in vivo test. We also described the dose dependent cyto-genotoxic effects of nanoceria based on their physical-chemical nature. Paradoxically, these particles have been characterized as either pro-oxidant or anti-oxidant in dependence of microenvironment and physiological conditions such as pH. Finally, this chapter will contribute to point out aspects of the development of new in vitro and in vivo methodologies to detect cyto-genotoxic effects of the nanoceria.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ivanov VK, Shcherbakov AB, Usatenko AV (2009) Structure-sensitive properties and biomedical applications of nanodispersed cerium dioxide. Russ Chem Rev 78:855–871

    Article  CAS  Google Scholar 

  2. Jung CR, Han J, Nam SW et al (2004) Selective oxidation of CO over CuO-CeO2 catalyst: effect of calcination temperature. Catal Today 93−5:183–190

    Article  Google Scholar 

  3. Park E-J, Choi J, Park Y-K et al (2008b) Oxidative stress induced by cerium oxide nanoparticles in cultured BEAS-2B cells. Toxicology 245:90–100

    Article  CAS  PubMed  Google Scholar 

  4. Singh N, Manshian B, Jenkins GJS et al (2009) NanoGenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials 30:3891–3914

    Article  CAS  PubMed  Google Scholar 

  5. Bour A, Mouchet F, Cadarsi S et al (2017) CeO2 nanoparticle fate in environmental conditions and toxicity on a freshwater predator species: a microcosm study. Environ Sci Pollut Res 24:1–9

    Article  Google Scholar 

  6. Gui X, Rui M, Song Y et al (2017) Phytotoxicity of CeO2 nanoparticles on radish plant (Raphanus sativus). Environ Sci Pollut Res Int 24(15):13775–13781

    Article  CAS  PubMed  Google Scholar 

  7. Spielman-Sun E, Lombi E, Donner E et al (2017) Impact of surface charge on cerium oxide nanoparticle uptake and translocation by wheat (Triticum aestivum). Environ Sci Technol 51(13):7361–7368

    Article  CAS  PubMed  Google Scholar 

  8. Zhao X, Yu M, Xu D et al (2017) Distribution, bioaccumulation, trophic transfer, and influences of CeO2 nanoparticles in a constructed aquatic food web. Environ Sci Technol 51(9):5205–5214

    Article  CAS  PubMed  Google Scholar 

  9. Park B, Martin P, Harris C et al (2007) Initial in vitro screening approach to investigate the potential health and environmental hazards of Enviroxtrade mark – a nanoparticulate cerium oxide diesel fuel additive. Part Fibre Toxicol 4:12

    Article  PubMed  PubMed Central  Google Scholar 

  10. Park B, Donaldson K, Duffin R et al (2008a) Hazard and risk assessment of a nanoparticulate cerium oxide-based diesel fuel additive – a case study. Inhal Toxicol 20:547–566

    Article  CAS  PubMed  Google Scholar 

  11. Hussain SM, Braydich-Stolle LK, Schrand AM et al (2009) Toxicity evaluation for safe use of nanomaterials: recent achievements and technical challenges. Adv Mater 21:1549–1559

    Article  CAS  Google Scholar 

  12. Bouillard JX, Vignes A (2014) Nano-Evaluris: an inhalation and explosion risk evaluation method for nanoparticle use. Part I: description of the methodology. J Nanopart Res 16:2149

    Article  Google Scholar 

  13. Seaton A, Donaldson K (2005) Nanoscience, nanotoxicology, and the need to think small. Lancet 365:923–924

    Article  PubMed  Google Scholar 

  14. Zhu M-T, Feng W-Y, Wang Y et al (2009) Particokinetics and extrapulmonary translocation of intratracheally instilled ferric oxide nanoparticles in rats and the potential health risk assessment. Toxicol Sci 107:342–351

    Article  CAS  PubMed  Google Scholar 

  15. Zhu M, Nie G, Meng H et al (2013a) Physicochemical properties determine nanomaterial cellular uptake, transport, and fate. Acc Chem Res 46:622–631

    Article  CAS  PubMed  Google Scholar 

  16. Rollin-Genetet F, Seidel C, Artells E et al (2015) Redox reactivity of cerium oxide nanoparticles induces the formation of disulfide bridges in thiol-containing biomolecules. Chem Res Toxicol 28:2304–2312

    Article  CAS  PubMed  Google Scholar 

  17. Chou LYT, Ming K, Chan WCW (2011) Strategies for the intracellular delivery of nanoparticles. Chem Soc Rev 40:233–245

    Article  CAS  PubMed  Google Scholar 

  18. Zhu M, Perrett S, Nie G (2013b) Understanding the particokinetics of engineered nanomaterials for safe and effective therapeutic applications. Small 9:1619–1634

    Article  CAS  PubMed  Google Scholar 

  19. Mazzolini J, Weber RJM, Chen HS et al (2016) Protein corona modulates uptake and toxicity of nanoceria via clathrin-mediated endocytosis. Biol Bull 231:40–60

    Article  PubMed  Google Scholar 

  20. Singh S, Kumar A, Karakoti A et al (2010) Unveiling the mechanism of uptake and sub-cellular distribution of cerium oxide nanoparticles. Mol BioSyst 6:1813–1820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sakhtianchi R, Minchin RF, Lee K-B et al (2013) Exocytosis of nanoparticles from cells: role in cellular retention and toxicity. Adv Colloid Interf Sci 201–202:18–29

    Article  Google Scholar 

  22. Bai S, Zhao J, Wang L et al (2010) SO2-promoted reduction of NO with NH3 over vanadium molecularly anchored on the surface of carbon nanotubes. Catal Today 158:393–400

    Article  CAS  Google Scholar 

  23. Kumari M, Kumari SI, Grover P (2014) Genotoxicity analysis of cerium oxide micro and nanoparticles in Wistar rats after 28 days of repeated oral administration. Mutagenesis 29:467–479

    Article  CAS  PubMed  Google Scholar 

  24. Dhawan A, Sharma V, Parmar D (2009) Nanomaterials: a challenge for toxicologists. Nanotoxicology 3:1–9

    Article  CAS  Google Scholar 

  25. Dhawan A, Sharma V (2010) Toxicity assessment of nanomaterials: methods and challenges. Anal Bioanal Chem 398:589–605

    Article  CAS  PubMed  Google Scholar 

  26. Lin P-C, Lin S, Wang PC et al (2014) Techniques for physicochemical characterization of nanomaterials. Biotechnol Adv 32:711–726

    Article  PubMed  Google Scholar 

  27. Tenzer S, Docter D, Rosfa S et al (2011) Nanoparticle size is a critical physicochemical determinant of the human blood plasma corona: a comprehensive quantitative proteomic analysis. ACS Nano 5:7155–7167

    Article  CAS  PubMed  Google Scholar 

  28. Xu M, Li J, Iwai H et al (2012) Formation of nano-bio-complex as nanomaterials dispersed in a biological solution for understanding nanobiological interactions. Sci Rep 2:406. (2012). https://doi.org/10.1038/srep00406

    Article  PubMed  PubMed Central  Google Scholar 

  29. Murdock RC, Braydich-Stolle L, Schrand AM et al (2008) Characterization of nanomaterial dispersion in solution prior to In vitro exposure using dynamic light scattering technique. Toxicol Sci 101:239–253

    Article  CAS  PubMed  Google Scholar 

  30. Montes-Burgos I, Walczyk D, Hole P et al (2010) Characterisation of nanoparticle size and state prior to nanotoxicological studies. J Nanopart Res 12:47–53

    Article  Google Scholar 

  31. Patil S, Sandberg A, Heckert E et al (2007) Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential. Biomaterials 28:4600–4607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rezwan K, Meier LP, Rezwan M et al (2004) Bovine serum albumin adsorption onto colloidal Al2O3 particles: a new model based on zeta potential and UV-vis measurements. Langmuir 20:10055–10061

    Article  CAS  PubMed  Google Scholar 

  33. Prasad RY, Wallace K, Daniel KM et al (2013) Effect of treatment media on the agglomeration of titanium dioxide nanoparticles: impact on genotoxicity, cellular interaction, and cell cycle. ACS Nano 7:1929–1942

    Article  CAS  PubMed  Google Scholar 

  34. Franchi LP, Manshian BB, de Souza TAJ et al (2015) Cyto- and genotoxic effects of metallic nanoparticles in untransformed human fibroblast. Toxicol In Vitro 29:1319–1331

    Article  CAS  PubMed  Google Scholar 

  35. Teeguarden J, Hinderliter P, Orr G et al (2007) Particokinetics in vitro: dosimetry considerations for in vitro nanoparticle toxicity assessments. Toxicol Sci 95:300–312

    Article  CAS  PubMed  Google Scholar 

  36. Kuhnel D, Busch W, Meissner T et al (2009) Agglomeration of tungsten carbide nanoparticles in exposure medium does not prevent uptake and toxicity toward a rainbow trout gill cell line. Aquat Toxicol 93:91–99

    Article  PubMed  Google Scholar 

  37. Greulich C, Diendorf J, Simon T et al (2011) Uptake and intracellular distribution of silver nanoparticles in human mesenchymal stem cells. Acta Biomater 7:347–354

    Article  CAS  PubMed  Google Scholar 

  38. Szymanski CJ, Munusamy P, Mihai C et al (2015) Shifts in oxidation states of cerium oxide nanoparticles detected inside intact hydrated cells and organelles. Biomaterials 62:147–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Benameur L, Auffan M, Cassien M et al (2014) DNA damage and oxidative stress induced by CeO2 nanoparticles in human dermal fibroblasts: evidence of a clastogenic effect as a mechanism of genotoxicity. Nanotoxicology 9(6):696–705

    Article  PubMed  Google Scholar 

  40. Sarkar A, Ghosh M, Sil PC (2014) Nanotoxicity: oxidative stress mediated toxicity of metal and metal oxide nanoparticles. J Nanosci Nanotechnol 14:730–743

    Article  CAS  PubMed  Google Scholar 

  41. Kain J, Karlsson HL, Möller L (2012) DNA damage induced by micro- and nanoparticles-interaction with FPG influences the detection of DNA oxidation in the comet assay. Mutagenesis 27:491–500

    Article  CAS  PubMed  Google Scholar 

  42. Wan R, Mo Y, Feng L et al (2012) DNA damage caused by metal nanoparticles: involvement of oxidative stress and activation of ATM. Chem Res Toxicol 25:1402–1411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pagliari F, Mandoli C, Forte G et al (2012) Cerium oxide nanoparticles protect cardiac progenitor cells from oxidative stress. ACS Nano 6:3767–3775

    Article  CAS  PubMed  Google Scholar 

  44. Cheng G, Guo W, Han L et al (2013) Cerium oxide nanoparticles induce cytotoxicity in human hepatoma SMMC-7721 cells via oxidative stress and the activation of MAPK signaling pathways. Toxicol In Vitro 27:1082–1088

    Article  CAS  PubMed  Google Scholar 

  45. Hussain S, Garantziotis S (2013) Interplay between apoptotic and autophagy pathways after exposure to cerium dioxide nanoparticles in human monocytes. Autophagy 9:101–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Xu C, Qu X (2014) Cerium oxide nanoparticle: a remarkably versatile rare earth nanomaterial for biological applications. Npg Asia Mater 6:e90

    Article  CAS  Google Scholar 

  47. Mittal S, Pandey AK (2014) Cerium oxide nanoparticles induced toxicity in human lung cells: role of ROS mediated DNA damage and apoptosis. Biomed Res Int 891934:14

    Google Scholar 

  48. Auffan M, Rose J, Orsiere T et al (2009) CeO2 nanoparticles induce DNA damage towards human dermal fibroblasts in vitro. Nanotoxicology 3:161–171

    Article  CAS  Google Scholar 

  49. Pierscionek BK, Li YB, Yasseen AA et al (2010) Nanoceria have no genotoxic effect on human lens epithelial cells. Nanotechnology 21:035102

    Article  PubMed  Google Scholar 

  50. Eom H-J, Choi J (2009) Oxidative stress of CeO2 nanoparticles via p38-Nrf-2 signaling pathway in human bronchial epithelial cell, Beas-2B. Toxicol Lett 187:77–83

    Article  CAS  PubMed  Google Scholar 

  51. Brunner TJ, Wick P, Manser P et al (2006) In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ Sci Technol 40:4374–4381

    Article  CAS  PubMed  Google Scholar 

  52. Hussain S, Al-Nsour F, Rice AB et al (2012) Cerium dioxide nanoparticles induce apoptosis and autophagy in human peripheral blood monocytes. ACS Nano 6:5820–5829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tarnuzzer RW, Colon J, Patil S et al (2005) Vacancy engineered ceria nanostructures for protection from radiation-induced cellular damage. Nano Lett 5:2573–2577

    Article  CAS  PubMed  Google Scholar 

  54. Chen J, Patil S, Seal S et al (2006) Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides. Nat Nanotechnol 1:142–150

    Article  CAS  PubMed  Google Scholar 

  55. Colon J, Herrera L, Smith J et al (2009) Protection from radiation-induced pneumonitis using cerium oxide nanoparticles. Nanomedicine 5:225–231

    Article  CAS  PubMed  Google Scholar 

  56. Colon J, Hsieh N, Ferguson A et al (2010) Cerium oxide nanoparticles protect gastrointestinal epithelium from radiation-induced damage by reduction of reactive oxygen species and upregulation of superoxide dismutase 2. Nanomedicine: NBM 6:698–705

    Article  CAS  Google Scholar 

  57. Celardo I, De Nicola M, Mandoli C et al (2011a) Ce3+ ions determine redox-dependent anti-apoptotic effect of cerium oxide nanoparticles. ACS Nano 5:4537–4549

    Article  CAS  PubMed  Google Scholar 

  58. Celardo I, Pedersen JZ, Traversa E et al (2011b) Pharmacological potential of cerium oxide nanoparticles. Nanoscale 3:1411–1420

    Article  CAS  PubMed  Google Scholar 

  59. Celardo I, Traversa E, Ghibelli L (2011c) Cerium oxide nanoparticles: a promise for applications in therapy. J Exp Ther Oncol 9:47–51

    CAS  PubMed  Google Scholar 

  60. Alili L, Sack M, von Montfort C et al (2013) Downregulation of tumor growth and invasion by redox-active nanoparticles. Antioxid Redox Signal 19:765–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chaudhury K, Babu KN, Singh AK et al (2013) Mitigation of endometriosis using regenerative cerium oxide nanoparticles. Nanomedicine 9:439–448

    Article  CAS  PubMed  Google Scholar 

  62. Das S, Dowding JM, Klump KE et al (2013) Cerium oxide nanoparticles: applications and prospects in nanomedicine. Nanomedicine 8:1483–1508

    Article  CAS  PubMed  Google Scholar 

  63. Cheng Y, Li Y, Li R et al (2000) Orally administrated ceriumchloride induces the conformational changes of rat hemoglobin, the hydrolysis of 2,3-DPG and the oxidation of heme-Fe(II), leading to changes of oxygen affinity. Chem Biol Interact 125:191–208

    Article  CAS  PubMed  Google Scholar 

  64. Kuchma MH, Komanski CB, Colon J et al (2010) Phosphate ester hydrolysis of biologically relevant molecules by cerium oxide nanoparticules. Nanomedicine 6:738–744

    Article  CAS  PubMed  Google Scholar 

  65. Liu P, Ma L, Yin S et al (2008) Effect of Ce3+ on conformation and activity of superoxide dismutase. Biol Trace Elem Res 125:170–178

    Article  CAS  PubMed  Google Scholar 

  66. Deshpande S, Patil S, Kuchibhatla S et al (2005) Size dependency variation in lattice parameter and valency states in nanocrystalline cerium oxide. Appl Phys Lett 87:133113

    Article  Google Scholar 

  67. Yokel RA, Hancock ML, Grulke EA et al (2017) Nanoceria dissolution and carboxylic acid stabilization in aqueous dispersions. FASEB J 31(1):lb624

    Google Scholar 

  68. Asati A, Santra S, Kaittanis C et al (2010) Surface-charge-dependent cell localization and cytotoxicity of cerium oxide nanoparticles. ACS Nano 4:5321–5331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Rim KT, Song SW, Kim HY (2013) Oxidative DNA damage from nanoparticle exposure and its application to workers’ health: a literature review. Saf Health Work 4:177–186

    Article  PubMed  PubMed Central  Google Scholar 

  70. Stoccoro A, Karlsson HL, Coppedè F et al (2013) Epigenetic effects of nano-sized materials. Toxicology 313:3–14

    Article  CAS  PubMed  Google Scholar 

  71. Smolkova B, El Yamani N, Collins AR et al (2015) Nanoparticles in food. Epigenetic changes induced by nanomaterials and possible impact on health. Food Chem Toxicol 77:64–73

    Article  CAS  PubMed  Google Scholar 

  72. Garaud M, Trapp J, Devin S et al (2015) Multibiomarker assessment of cerium dioxide nanoparticle (nCeO2) sublethal effects on two freshwater invertebrates, Dreissena polymorpha and Gammarus roeseli. Aquat Toxicol 158:63–74

    Article  CAS  PubMed  Google Scholar 

  73. Zhang H, He X, Zhang Z et al (2011) Nano-CeO2 exhibits adverse effects at environmental relevant concentrations. Environ Sci Technol 45(8):3725–3730

    Article  CAS  PubMed  Google Scholar 

  74. Wehmas LC, Anders C, Chess J et al (2015) Comparative metal oxide nanoparticle toxicity using embryonic zebrafish. Toxicol Rep 2:702–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Alaraby M, Hernández A, Annangi B et al (2015) Antioxidant and antigenotoxic properties of CeO2 NPs and cerium sulphate: studies with drosophila melanogaster as a promising in vivo model. Nanotoxicology 9(6):749–759

    Article  CAS  PubMed  Google Scholar 

  76. Gui X, Zhang Z, Liu S et al (2015) Fate and phytotoxicity of CeO2 nanoparticles on lettuce cultured in the potting soil environment. PLoS One 10(8):e0134261

    Article  PubMed  PubMed Central  Google Scholar 

  77. Poma A, Ragnelli AM, de Lapuente J et al (2014) In vivo inflammatory effects of ceria nanoparticles on CD-1 mouse: evaluation by hematological, histological, and TEM analysis. J Immunol Res 2014:361419

    Article  PubMed  PubMed Central  Google Scholar 

  78. Preaubert L, Courbiere B, Achard V et al (2016) Cerium dioxide nanoparticles affect in vitro fertilization in mice. Nanotoxicology 10(1):111–117

    CAS  PubMed  Google Scholar 

  79. Kim YH, Boykin E, Stevens T et al (2014) Comparative lung toxicity of engineered nanomaterials utilizing in vitro, ex vivo and in vivo approaches. J Nanobiotechnol 12:47

    Article  Google Scholar 

  80. Falugi C, Aluigi MG, Chiantore MC et al (2012) Toxicity of metal oxide nanoparticles in immune cells of the sea urchin. Mar Environ Res 76:114–121

    Article  CAS  PubMed  Google Scholar 

  81. Gao W, Wei X, Wang X et al (2016) A competitive coordination-based CeO2 nanowire-DNA nanosensor: fast and selective detection of hydrogen peroxide in living cells and in vivo. Chem Commun (Camb) 52(18):3643–3646

    Article  CAS  Google Scholar 

  82. Minarchick VC, Stapleton PA, Fix NR et al (2015) Intravenous and gastric cerium dioxide nanoparticle exposure disrupts microvascular smooth muscle signaling. Toxicol Sci 144(1):77–89

    Article  CAS  PubMed  Google Scholar 

  83. Lanone S, Rogerieux F, Geys J et al (2009) Comparative toxicity of 24 manufactured nanoparticles in human alveolar epithelial and macrophage cell lines. Part Fibre Toxicol 6:14

    Article  PubMed  PubMed Central  Google Scholar 

  84. Eidi H, Joubert O, Attik G et al (2010) Cytotoxicity assessment of heparin nanoparticles in NR8383 macrophages. Int J Pharm 396:156–165

    Article  CAS  PubMed  Google Scholar 

  85. Nguea HD, de Reydellet A, Lehuede P et al (2008) A new in vitro cellular system for the analysis of mineral fiber biopersistence. Arch Toxicol 82:435–443

    Article  Google Scholar 

  86. Edmondson R, Broglie JJ, Adcock AF et al (2014) Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev Technol 12:207–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ravi M, Paramesh V, Kaviya SR et al (2015) 3D cell culture systems: advantages and applications. J Cell Physiol 230:16–26

    Article  CAS  PubMed  Google Scholar 

  88. Baharvand H, Hashemi SM, Ashtian SK et al (2006) Differentiation of human embryonic stem cells into hepatocytes in 2D and 3D culture systems in vitro. Int J Dev Biol 50:645–652

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Pereira Franchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Souza, T.A.J., Rocha, T.L., Franchi, L.P. (2018). Detection of DNA Damage Induced by Cerium Dioxide Nanoparticles: From Models to Molecular Mechanism Activated. In: Saquib, Q., Faisal, M., Al-Khedhairy, A., Alatar, A. (eds) Cellular and Molecular Toxicology of Nanoparticles. Advances in Experimental Medicine and Biology, vol 1048. Springer, Cham. https://doi.org/10.1007/978-3-319-72041-8_13

Download citation

Publish with us

Policies and ethics