Skip to main content

Toxicity Assessment in the Nanoparticle Era

  • Chapter
  • First Online:
Cellular and Molecular Toxicology of Nanoparticles

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1048))

Abstract

The wide use of engineered nanomaterials in many fields, ranging from biomedical, agriculture, environment, cosmetic, urged the scientific community to understand the processes behind their potential toxicity, in order to develop new strategies for human safety. As a matter of fact, there is a big discrepancy between the increased classes of nanoparticles and the consequent applications versus their toxicity assessment. Nanotoxicology is defined as the science that studies the effects of engineered nanodevices and nanostructures in living organisms. This chapter analyzes the physico-chemical properties of the most used nanoparticles, the way they enter the living organism and their cytoxicity mechanisms at cellular exposure level. Moreover, the current state of nanoparticles risk assessment is reported and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hoyt VW, Mason E (2008) Nanotechnology. Emerging health issues. J Chem Health Saf 15:10–15

    Article  CAS  Google Scholar 

  2. ISO, 2010. International Organization for Standardization. Nanotechnologies vocabulary part 1: Core Terms. ISO/TS 80004-1:2010

    Google Scholar 

  3. ISO (2008) International Organization for Standardization. Technical specification: nanotechnologies terminology and definitions for nanoobjects nanoparticle, nanofibre and nanoplate. ISO/TS 80004-2:2008

    Google Scholar 

  4. Oberdörster G, Stone V, Donaldson K (2007) Toxicology of nanoparticles: a historical perspective. Nanotoxicology 1:2–25

    Article  CAS  Google Scholar 

  5. Wang Y, Xia Y (2004) Bottom-up and top-down approaches to the synthesis of monodispersed spherical colloids of low melting-point metals. Nano Lett 4(10):2047–2050

    Google Scholar 

  6. Silva GA (2006) Neuroscience nanotechnology: progress, opportunities and challenges. Nat Rev Neurosci 7:65–74

    Article  CAS  PubMed  Google Scholar 

  7. Ray PC, Fu PP (2010) Toxicity and environmental risks of nanomaterials: challenges and future needs. J Env Sci Heal C Env Carcinog Ecotoxicol Rev 27:1–35

    Google Scholar 

  8. Kango S, Kalia S, Celli A et al (2013) Surface modification of inorganic nanoparticles for development of organic-inorganic nanocomposites – a review. Prog Polym Sci 38:1232–1261

    Article  CAS  Google Scholar 

  9. Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Wiley B, Sun Y, Xia Y (2007) Synthesis of silver nanostructures with controlled shapes and properties. Acc Chem Res 40:1067–1076

    Article  CAS  PubMed  Google Scholar 

  11. Prasek J, Drbohlavova J, Chomoucka J et al (2011) Methods for carbon nanotubes synthesis—review. J Mater Chem 21:15872

    Article  CAS  Google Scholar 

  12. Mu Q, Jiang G, Chen L et al (2014) Chemical basis of interactions between engineered nanoparticles and biological systems. Chem Rev 114(15):7740–7781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Evans SJ, Clift MJD, Singh N et al (2017) Critical review of the current and future challenges associated with advanced in vitro systems towards the study of nanoparticle (secondary) genotoxicity. Mutagenesis 32(1):233–241

    Article  PubMed  Google Scholar 

  14. Oberdörster G (2010) Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. J Intern Med 267:89–105

    Article  PubMed  CAS  Google Scholar 

  15. Oberdörster G, Maynard A, Donaldson K et al (2005) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2:8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Ma DD, Yang WX (2015) Engineered nanoparticles induce cell apoptosis: potential for cancer therapy. Oncotarget. 28 7(26):40882–40903

    Google Scholar 

  17. Hund-Rinke K, Herrchen M, Schlich K et al (2015) Test strategy for assessing the risks of nanomaterials in the environment considering general regulatory procedures. Environ Sci Eur 27:1–12

    Article  CAS  Google Scholar 

  18. Stone V, Johnston H, Schins RPF (2009) Development of in vitro systems for nanotoxicology: methodological considerations. Crit Rev Toxicol 39:613–626

    Article  CAS  PubMed  Google Scholar 

  19. Fröhlich E, Salar-Behzadi S (2014) Toxicological assessment of inhaled nanoparticles: role of in vivo, ex vivo, in vitro, and in silico studies. Int J Mol Sci 15:4795–4822

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. (2010) Directive 2010/63/EU. http://ec.europa.eu/environment/chemicals/lab_animals/index_en.htm

  21. Aillon KL, Xie Y, El-Gendy N et al (2009) Effects of nanomaterial physicochemical properties on in vivo toxicity. Adv Drug Deliv Rev 61:457–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dechsakulthorn F, Hayes A, Bakand S et al (2007) In vitro cytotoxicity assessment of selected nanoparticles using human skin fibroblasts. Proceeding 6th World Congr Altern Anim Use Life Sci 397–400

    Google Scholar 

  23. Jones CF, Grainger DW (2009) In vitro assessments of nanomaterial toxicity. Adv Drug Deliv Rev 61(6):438–5636. 490–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Barua S, Mitragotri S (2014) Challenges associated with penetration of nanoparticles across cell and tissue barriers: a review of current status and future prospects Sutapa. Nano Today 9:223–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yah CS, Simate GS, Iyuke SE (2012) Nanoparticles toxicity and their routes of exposures. Pak J Pharm Sci 25(2):477–491

    CAS  PubMed  Google Scholar 

  26. Qiao H, Liu W, Gu H et al (2015) The transport and deposition of nanoparticles in respiratory system by inhalation. J Nanomater 2015:394507. 8

    Article  CAS  Google Scholar 

  27. Bakshi S, He ZL, Harris WG (2014) Natural nanoparticles: implications for environment and human health. Crit Rev Environ Sci Technol 45:861–904

    Article  CAS  Google Scholar 

  28. Schneider M, Stracke F, Hansen S, Schaefer UF (2009) Nanoparticles and their interactions with the dermal barrier. Dermatoendocrinol 1:197–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li J, Chang X, Chen X et al (2014) Toxicity of inorganic nanomaterials in biomedical imaging. Biotechnol Adv 32:727–743

    Article  CAS  PubMed  Google Scholar 

  30. Oberdörster G, Sharp Z, Atudorei V et al (2004) Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol 16:437–445

    Article  PubMed  CAS  Google Scholar 

  31. Natarajan A, Gruettner C, Ivkov R et al (2008) Nanoferrite particle based radioimmunonanoparticles: binding affinity and in vivo pharmacokinetics. Biophys Chem 19:1211–1218

    CAS  Google Scholar 

  32. Powers KW, Palazuelos M, Moudgil BM, Roberts SM (2007) Characterization of the size, shape, and state of dispersion of nanoparticles for toxicological studies. Nanotoxicology 1:42–51

    Article  CAS  Google Scholar 

  33. Jiang J, Oberdörster G, Elder A et al (2008) Does nanoparticle activity depend upon size and crystal phase? Nanotoxicology 2(1):33–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Souza TAJ, Franchi LP, Rosa LR et al (2016) Cytotoxicity and genotoxicity of silver nanoparticles of different sizes in CHO-K1 and CHO-XRS5 cell lines. Mutat Res Genet Toxicol Environ Mutagen 795:70–83

    Article  CAS  PubMed  Google Scholar 

  35. Yallapu MM, Ebeling MC, Jaggi M, Chauhan SC (2013) Plasma proteins interaction with curcumin nanoparticles: implications in cancer therapeutics. Curr Drug Metab 14:504–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gatoo MA, Naseem S, Arfat MY et al (2014) Physicochemical properties of nanomaterials: implication in associated toxic manifestations. Biomed Res Int. 498420, 8

    Google Scholar 

  37. Nemmar A, Yuvaraju P, Beegam S et al (2016) Oxidative stress, inflammation, and DNA damage in multiple organs of mice acutely exposed to amorphous silica nanoparticles. Int J Nanomedicine 11:919–928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sonavane G, Tomoda K, Makino K (2008) Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size. Colloids Surf B: Biointerfaces 66:274–280

    Article  CAS  PubMed  Google Scholar 

  39. De Jong WH, Hagens WI, Krystek P et al (2008) Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials 29:1912–1919

    Article  PubMed  CAS  Google Scholar 

  40. Braakhuis HM, Park MVDZ, Gosens I et al (2014) Physicochemical characteristics of nanomaterials that affect pulmonary inflammation. Part Fibre Toxicol 11:18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Ahamed M, Akhtar MJ, Alhadlaq HA, Alrokayan SA (2015) Assessment of the lung toxicity of copper oxide nanoparticles: current status. Nanomedicine(Lond) 10(15):2365–2377

    Article  CAS  Google Scholar 

  42. Asgharian B, Price OT (2007) Deposition of ultrafine (nano) particles in the human lung. Inhal Toxicol 19:1045–1054

    Article  CAS  PubMed  Google Scholar 

  43. Von Garnier C (2013) Nanoparticles in the respiratory tract: modulation of antigen-presenting cell function. J Enviromental Immunol Toxicol 1:140

    Google Scholar 

  44. Kettler K, Veltman K, van de Meent D et al (2014) Cellular uptake of nanoparticles as determined by particle properties, experimental conditions, and cell type. Environ Toxicol Chem 33:481–492

    Article  CAS  PubMed  Google Scholar 

  45. Baharifar H, Amani A (2016) Cytotoxicity of chitosan/streptokinase nanoparticles as a function of size: An artificial neural networks study. Nanomedicine 12(1):171–180

    Article  CAS  PubMed  Google Scholar 

  46. Recordati C, De Maglie M, Bianchessi S et al (2016) Tissue distribution and acute toxicity of silver after single intravenous administration in mice: nano-specific and size-dependent effects. Part Fibre Toxicol 13:12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Chen Z, Meng H, Xing G et al (2006) Acute toxicological effects of copper nanoparticles in vivo. Toxicol Lett 163:109–120

    Article  CAS  PubMed  Google Scholar 

  48. Seiffert J, Hussain F, Wiegman C et al (2015) Pulmonary toxicity of instilled silver nanoparticles: Influence of size, coating and rat strain. PLoS One 10:1–17

    Article  CAS  Google Scholar 

  49. Li Y, Monteiro-Riviere NA (2016) Mechanisms of cell uptake, inflammatory potential and protein corona effects with gold nanoparticles. Nanomedicine 11:3185–3203

    Article  CAS  PubMed  Google Scholar 

  50. Allegri M, Bianchi MG, Chiu M et al (2016) Shape-related toxicity of titanium dioxide nanofibres. PLoS One 11:1–21

    Article  CAS  Google Scholar 

  51. Yokel RA (2016) Physicochemical properties of engineered nanomaterials that influence their nervous system distribution and effects. Nanomedicine Nanotechnol Biol Med 12:2081–2093

    Article  CAS  Google Scholar 

  52. Verma A, Stellacci F (2010) Effect of surface properties on nanoparticle-cell interactions. Small 6:12–21

    Article  CAS  PubMed  Google Scholar 

  53. Oh N, Park JH (2014) Endocytosis and exocytosis of nanoparticles in mammalian cells. Int J Nanomedicine 9:51–63

    PubMed  PubMed Central  Google Scholar 

  54. Nangia S, Sureshkumar R (2012) Efects of nanoparticle charge and shape anisotropy on traslocation through cell membranes. Langmuir 28:1766

    Article  CAS  Google Scholar 

  55. Zhang X-F, Liu Z-G, Shen W, Gurunathan S (2016) Silver nanoparticles: synthesis, characterization properties, applications, and therapeutic approaches. Int J Mol Sci 17:1534

    Article  PubMed Central  CAS  Google Scholar 

  56. Hsiao I-L, Huang Y-J (2011) Effects of various physicochemical characteristics on the toxicities of ZnO and TiO2 nanoparticles toward human lung epithelial cells. Sci Total Environ 409:1219–1228

    Article  CAS  PubMed  Google Scholar 

  57. Tarantola M, Pietuch A, Schneider D et al (2011) Toxicity of gold-nanoparticles: Synergistic effects of shape and surface functionalization on micromotility of epithelial cells. Nanotoxicology 5:254–268

    Article  CAS  PubMed  Google Scholar 

  58. Lee M-K, Lim S-J, Kim C-K (2007) Preparation, characterization and in vitro cytotoxicity of paclitaxel-loaded sterically stabilized solid lipid nanoparticles. Biomaterials 28:2137–2146

    Article  CAS  PubMed  Google Scholar 

  59. Chellappa M, Anjaneyulu U, Manivasagam G, Vijayalakshmi U (2015) Preparation and evaluation of the cytotoxic nature of TiO2 nanoparticles by direct contact method. Int J Nanomedicine 10:31–41

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Lippmann M (1990) Effects of fiber characteristics on lung deposition, retention, and disease. Environ Health Perspect 88:311–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yamamoto A, Honma R, Sumita M, Hanawa T (2004) Cytotoxicity evaluation of ceramic particles of different sizes and shapes. J Biomed Mater Res A 68:244–256

    Article  PubMed  CAS  Google Scholar 

  62. Goodman CM, McCusker CD, Yilmaz T, Rotello VM (2004) Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem 15:897–900

    Article  CAS  PubMed  Google Scholar 

  63. Huang H, Lai W, Cui M et al (2016) An evaluation of blood compatibility of silver nanoparticles. Sci Rep 6:25518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. King Heiden TC, Dengler E, Kao WJ et al (2007) Developmental toxicity of low generation PAMAM dendrimers in zebrafish. Toxicol Appl Pharmacol 225:70–79

    Article  CAS  Google Scholar 

  65. Platel A, Carpentier R, Becart E et al (2016) Influence of the surface charge of PLGA nanoparticles on their in vitro genotoxicity, cytotoxicity, ROS production and endocytosis. J Appl Toxicol 36:434–444

    Article  CAS  PubMed  Google Scholar 

  66. Wang JY, Chen J, Yang J et al (2016) Effects of surface charges of gold nanoclusters on long-term in vivo biodistribution, toxicity, and cancer radiation therapy. Int J Nanomedicine 11:3475–3485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Havrdova M, Hola K, Skopalik J et al (2016) Toxicity of carbon dots-effect of surface functionalization on the cell viability, reactive oxygen species generation and cell cycle. Carbon NY 99:238–248

    Article  CAS  Google Scholar 

  68. Kohli AK, Alpar HO (2004) Potential use of nanoparticles for transcutaneous vaccine delivery: Effect of particle size and charge. Int J Pharm 275:13–17

    Article  CAS  PubMed  Google Scholar 

  69. Bartczak D, Baradez M-O, Merson S et al (2013) Surface ligand dependent toxicity of zinc oxide nanoparticles in HepG2 cell model. J Phys Conf Ser 429:12015

    Article  CAS  Google Scholar 

  70. Yin H, Too HP, Chow GM (2005) The effects of particle size and surface coating on the cytotoxicity of nickel ferrite. Biomaterials 26:5818–5826

    Article  CAS  PubMed  Google Scholar 

  71. Zhou Z, Son J, Harper B et al (2015) Influence of surface chemical properties on the toxicity of engineered zinc oxide nanoparticles to embryonic zebrafish. Beilstein J Nanotechnol 6:1568–1579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bastos V, Ferreira de Oliveira JMP, Brown D et al (2016) The influence of Citrate or PEG coating on silver nanoparticle toxicity to a human keratinocyte cell line. Toxicol Lett 249:29–41

    Article  CAS  PubMed  Google Scholar 

  73. Fubini B, Hubbard A (2003) Reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation by silica in inflammation and fibrosis. Free Radic Biol Med 34:1507–1516

    Article  CAS  PubMed  Google Scholar 

  74. Chen H, Wang T, Li K et al (2017) Effects of surface modification of quantum dots on viability and migration of triple-negative breast cancer cells. J Colloid Interface Sci 485:51–58

    Article  CAS  PubMed  Google Scholar 

  75. Hanot CC, Choi YS, Anani TB et al (2016) Effects of iron-oxide nanoparticle surface chemistry on uptake kinetics and cytotoxicity in CHO-K1 cells. Int J Mol Sci 17(1):54

    Google Scholar 

  76. Malvindi MA, De Matteis V, Galeone A et al (2014) Toxicity assessment of silica coated iron oxide nanoparticles and biocompatibility improvement by surface engineering. PLoS One 9:1–11

    Article  CAS  Google Scholar 

  77. Connor EE, Mwamuka J, Gole A et al (2005) Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1:325–327

    Article  CAS  PubMed  Google Scholar 

  78. Uboldi C, Urbán P, Gilliland D et al (2016) Role of the crystalline form of titanium dioxide nanoparticles: rutile, and not anatase, induces toxic effects in Balb/3T3 mouse fibroblasts. Toxicol in Vitro 31:137–145

    Article  CAS  PubMed  Google Scholar 

  79. De Matteis V, Cascione M, Brunetti V et al (2016) Toxicity assessment of anatase and rutile titanium dioxide nanoparticles: the role of degradation in different pH conditions and light exposure. Toxicol In Vitro 37:201–210

    Article  PubMed  CAS  Google Scholar 

  80. Zhang H, Gilbert B, Huang F, Banfield JF (2003) Water driven structure transformation in nanoparticles at room temperature. Nature 424:1025–1029

    Article  CAS  PubMed  Google Scholar 

  81. Johnston CJ, Driscoll KE, Finkelstein JN et al (2000) Pulmonary chemokine and mutagenic responses in rats after subchronic inhalation of amorphous and crystalline silica. Toxicol Sci 56:405–413

    Article  CAS  PubMed  Google Scholar 

  82. Prasad RY, Wallace K, Daniel KM et al (2013) Effect of treatment media on the agglomeration of titanium dioxide nanoparticles: impact on genotoxicity, cellular interaction, and cell cycle. ACS Nano 7:1929–1942

    Article  CAS  PubMed  Google Scholar 

  83. Jiang J, Oberdörster G, Biswas P (2009) Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res 11:77–89

    Article  CAS  Google Scholar 

  84. Song Y, Li X, Du X (2009) Exposure to nanoparticles is related to pleural effusion, pulmonary fibrosis and granuloma. Eur Respir J 34:559–567

    Article  CAS  PubMed  Google Scholar 

  85. Whitsett JA, Alenghat T (2015) Respiratory epithelial cells orchestrate pulmonary innate immunity. Nat Immunol 16:27–35

    Article  CAS  PubMed  Google Scholar 

  86. Yang W, Peters JI, Williams RO (2008) Inhaled nanoparticles—a current review. Int J Pharm 356:239–247

    Article  CAS  PubMed  Google Scholar 

  87. Darquenne C, Paiva M, Prisk GK (2000) Effect of gravity on aerosol dispersion and deposition in the human lung after periods of breath holding. J Appl Physiol 89:1787–1792

    Article  CAS  PubMed  Google Scholar 

  88. Tsuda A, Henry FS, Butler JP (2013) Particle transport and deposition: basic physics of particle kinetics. Compr Physiol 3:1437–1471

    Article  PubMed  PubMed Central  Google Scholar 

  89. Geiser M, Jeannet N, Fierz M, Burtscher H (2017) Evaluating adverse effects of inhaled nanoparticles by realistic in vitro technology. Nanomaterials 7:49

    Article  PubMed Central  CAS  Google Scholar 

  90. Kumar A, Chen F, Mozhi A et al (2013) Innovative pharmaceutical development based on unique properties of nanoscale delivery formulation. Nanoscale 5:8307–8325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Bergin IL, Witzmann FA (2013) Nanoparticle toxicity by the gastrointestinal route: evidence and knowledge gaps. Int J Biomed Nanosci Nanotechnol 3(1–3). doi:https://doi.org/10.1504/IJBNN.2013.054515

  92. JAni P, Halbert GW, Langridge J, Florence AT (1990) Nanoparticle uptake by the rat gastrointestinal mucosa: quantitation and particle size dependency. J Pharm Pharmacol 42:821–826

    Article  CAS  PubMed  Google Scholar 

  93. Fröhlich EE, Fröhlich E (2016) Cytotoxicity of nanoparticles contained in food on intestinal cells and the gut microbiota. Int J Mol Sci 17(4):509

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Heringa MB, Geraets L, Van Eijkeren JCH et al (2016) Risk assessment of titanium dioxide nanoparticles via oral exposure, including toxicokinetic considerations. Nanotoxicology 10:1515–1525

    Article  CAS  PubMed  Google Scholar 

  95. Randall Wickett R, Visscher MO (2006) Structure and function of the epidermal barrier. Am J Infect Control 34:s98–s110

    Article  Google Scholar 

  96. Robertson TA, Sanchez WY, Roberts MS (2010) Are commercially available nanoparticles safe when applied to the skin? J Biomed Nanotechnol 6:452–468

    Article  CAS  PubMed  Google Scholar 

  97. Lademann J, Weigmann HJ, Rickmeyer C et al (1999) Penetration of titanium dioxide microparticles in a sunscreen formulation into the horny layer and the follicular orifice. Skin Pharmacol Appl Skin Physiol 12:247–256

    Article  CAS  PubMed  Google Scholar 

  98. Tan MH, Commens CA, Burnett L, Snitch PJ (1996) A pilot study on the percutaneous absorption of microfine titanium dioxide from sunscreens. Australas J Dermatol 37:185–187

    Article  CAS  PubMed  Google Scholar 

  99. Crosera M, Prodi A, Mauro M et al (2015) Titanium dioxide nanoparticle penetration into the skin and effects on HaCaT cells. Int J Environ Res Public Health 12:9282–9297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Larese F, Mauro M, Adami G, Bovenzi MCM (2015) Nanoparticles skin absorption: new aspects for a safety profile evaluation. Regul Toxicol Pharmacol 72:310–322

    Article  CAS  Google Scholar 

  101. Tak YK, Pal S, Naoghare PK, Rangasamy S (2015) Shape-dependent skin penetration of silver nanoparticles: does it really matter? Sci Rep 5:16908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Balogh L, Nigavekar SS, Nair BM et al (2007) Significant effect of size on the in vivo biodistribution of gold composite nanodevices in mouse tumor models. Nanomedicine Nanotechnol Biol Med 3:281–296

    Article  CAS  Google Scholar 

  103. Yang Y, Qin Z, Zeng W et al (2017) Toxicity assessment of nanoparticles in various systems and organs. Nanotechnol Rev 6(3):279–289

    Article  CAS  Google Scholar 

  104. Longmire M, Choyke PL, Kobayashi H (2008) Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine (Lond) 3(5):703–717

    Article  CAS  Google Scholar 

  105. Blanco E, Shen H, Ferrari M (2015) Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 33(9):941–951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Doudi M, Setorki M (2014) The acute liver injury in rat caused by gold nanoparticles. Nanomedicine J 1:248–257

    Google Scholar 

  107. Gaiser BK, Hirn S, Kermanizadeh A et al (2012) Effects of silver nanoparticles on the liver and hepatocytes in vitro. Toxicol Sci 131:537–547

    Article  PubMed  CAS  Google Scholar 

  108. Tang J, Xiong L, Zhou G et al (2010) Silver nanoparticles crossing through and distribution in the blood-brain barrier In vitro. J Nanosci Nanotechnol 10(10):6313–6317

    Article  CAS  PubMed  Google Scholar 

  109. Choi HS, Liu W, Misra P et al (2007) Renal clearance of nanoparticles. Nat Biotechnol 25:1165–1170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lei R, Wu C, Yang B et al (2008) Integrated metabolomic analysis of the nano-sized copper particle-induced hepatotoxicity and nephrotoxicity in rats: a rapid in vivo screening method for nanotoxicity. Toxicol Appl Pharmacol 232:292–301

    Article  CAS  PubMed  Google Scholar 

  111. Weissleder R, Nahrendorf M, Pittet MJ (2014) Imaging macrophages with nanoparticles. Nat Mater 13:125–138

    Article  CAS  PubMed  Google Scholar 

  112. Wu J, Liu W, Xue C et al (2009) Toxicity and penetration of TiO2 nanoparticles in hairless mice and porcine skin after subchronic dermal exposure. Toxicol Lett 191:1–8

    Article  CAS  PubMed  Google Scholar 

  113. Zhao Y, Xing G, Chai Z (2008) Nanotoxicology: are carbon nanotubes safe? Nat Nanotechnol 3:191–192

    Article  CAS  PubMed  Google Scholar 

  114. Cooper GM (2000) The cell: molecular approach. ASM Press, Washington, DC

    Google Scholar 

  115. Kafshgari MH, Harding FJ, Voelcker NH (2015) Insights into cellular uptake of nanoparticles. Curr Drug Deliv 12(1):63–77

    Article  CAS  PubMed  Google Scholar 

  116. Zhao F, Zhao Y, Liu Y et al (2011) Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials. Small 7:1322–1337

    Article  CAS  PubMed  Google Scholar 

  117. Shang L, Nienhaus K, Nienhaus GU (2014) Engineered nanoparticles interacting with cells: size matters. J Nanobiotechnol 12:5

    Article  CAS  Google Scholar 

  118. Johannes L, Lamaze C (2002) Clathrin-dependent or not: is it still the question? Traffic 3(7):443–451

    Article  CAS  PubMed  Google Scholar 

  119. Aderem A, Underhill DM (1999) Mechanisms of phagocytosis in macrophages. Annu Rev Immunol 17:593–562

    Article  CAS  PubMed  Google Scholar 

  120. Conner SD, Schmid SL (2003) Regulated portals of entry into the cell. Nature 422(6927):37–44

    Article  CAS  PubMed  Google Scholar 

  121. Pelkmans L, Helenius A (2002) Endocytosis via caveolae. Traffic 3(5):311–320

    Article  CAS  PubMed  Google Scholar 

  122. Rejman J, Oberle V, Zuhorn IS et al (2004) Size-dependent internalization of particles via the pathways of clathrinand caveolae-mediated endocytosis. Biochem J 1:159–169

    Article  Google Scholar 

  123. Saikia J, Yazdimamaghani M, Pouya S et al (2016) Differential protein adsorption and cellular uptake of silica nanoparticles based on size and porosity. ACS Appl Mater Interfaces 8(50):34820–34832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Pritz CO, Bitsche M, Salvenmoser W et al (2013) Endocytic trafficking of silica nanoparticles in a cell line derived from the organ of Corti. Nanomedicine 8:239–252

    Article  CAS  PubMed  Google Scholar 

  125. Greulicha C, Diendorfb J, Simonc T et al (2011) Uptake and intracellular distribution of silver nanoparticles in human mesenchymal stem cells. Acta Biomater 7:347–354

    Article  CAS  Google Scholar 

  126. Thurn KT, Arora H, Paunesku T et al (2011) Endocytosis of titanium dioxide nanoparticles in prostate cancer PC-3M cells. Nanomedicine Nanotechnol Biol Med 7:123–130

    Article  CAS  Google Scholar 

  127. Mizuhara T, Saha K, Moyano DF et al (2015) Acylsulfonamide-Functionalized zwitterionic gold nanoparticles for enhanced cellular uptake at tumor pH. Angew Chemie-Int Ed 54:6567–6570

    Article  CAS  Google Scholar 

  128. Wang Z, Xia T, Liu S (2015) Mechanisms of nanosilver-induced toxicological effects: more attention should be paid to its sublethal effects. R Soc Chem 7:7470–7481

    CAS  Google Scholar 

  129. Verissimo TV, Santos NT, Silva JR et al (2016) In vitro cytotoxicity and phototoxicity of surface-modified gold nanoparticles associated with neutral red as a potential drug delivery system in phototherapy. Mater Sci Eng C 65:199–204

    Article  CAS  Google Scholar 

  130. Hashemi E, Akhavan O, Shamsara M et al (2016) Synthesis and cyto-genotoxicity evaluation of graphene on mice spermatogonial stem cells. Colloids Surf B: Biointerfaces 146:770–776

    Article  CAS  PubMed  Google Scholar 

  131. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  CAS  PubMed  Google Scholar 

  132. Olbrich C, Bakowsky U, Lehr CM et al (2001) Cationic solid-lipid nanoparticles can efficiently bind and transfect plasmid DNA. J Control Release 77:345–355

    Article  CAS  PubMed  Google Scholar 

  133. Wong Shi Kam N, Dai H (2005) Carbon nanotubes as intracellular protein transporters: generality and biological functionality. J Am Chem Soc 127:6021–6026

    Article  CAS  Google Scholar 

  134. Shenoy D, Fu W, Li J (2005) Surface functionalization of gold nanoparticles using hetero-bifunctional poly(ethylene glycol) spacer for intracellular tracking and delivery. Int J Nanomedicine 1(1):51–57

    Article  Google Scholar 

  135. Wang H, Joseph JA (1999) Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reade. Free Radic Biol Med 27:612–616

    Article  CAS  PubMed  Google Scholar 

  136. Ostling JK (1984) Microelectrophoretic study of radiation-induced DNA damages in individual mammalian cells. Biochem Biophys Res Commun 30:291–298

    Article  Google Scholar 

  137. Singh NP, McCoy MT, Tice RR et al (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191

    Article  CAS  PubMed  Google Scholar 

  138. Castiglioni S, Caspani C, Cazzaniga A et al (2014) Short- and long-term effects of silver nanoparticles on human microvascular endothelial cells. World J Biol Chem 26:457–464

    Article  Google Scholar 

  139. Boverhof DR, Bramante CM, Butala JH et al (2015) Comparative assessment of nanomaterial definitions and safety evaluation considerations. Regul Toxicol Pharmacol 73:137–150

    Article  CAS  PubMed  Google Scholar 

  140. Musazzi UM, Marini V, Casiraghi A et al (2017) Is the European regulatory framework sufficient to assure the safety of citizens using health products containing nanomaterials? Drug Discov Today 22(6):870–882

    Article  PubMed  Google Scholar 

  141. Commission of the European Communities (2005) Communication from the Commission to the Council, the European Parliament and the Economic and Social Committee. Nanosciences and nanotechnologies: an action plan for Europe 2005–2009

    Google Scholar 

  142. European Parliament (2006) Resolution on Nanosciences and nanotechnologies: an action plan for Europe 2005–2009

    Google Scholar 

  143. Commission of the European Communities (2008) Communication from the Commission to the European Parliament, the Council and the European Economic and Social Committee. Regulatory aspects of nanomaterial

    Google Scholar 

  144. Regulation (EC) No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on cosmetic products. Off. J. EU L.342, 59–209. J. EU L.342, 59–209

    Google Scholar 

  145. Commission E (2011) Commission Recommendation of 18 October 2011 on the definition of nanomaterial (2011/696/EU). EU, ff. J. L. 275, 38–40.

    Google Scholar 

  146. Council of the European Union (2016 Proposal for a regulation of the European parliament and of the council on medical devices, and amending directive 2011/83/EC, Regulation (EC) No 178/2002 and Regulation (EC) No 1223/2009. Council of the European Union

    Google Scholar 

  147. SCENIHR (2010) Scientific basis for the definition of the term “Nanomaterial”

    Google Scholar 

  148. Lövestam G et al. (2010) JRC reference report: considerations on a definition of nanomaterial for regulatory purposes (EUR 24403 EN), European Union

    Google Scholar 

  149. Domingos RF, Baalousha MA, Ju-Nam Y et al (2009) Characterizing manufactured nanoparticles in the environment: multimethod determination of particle sizes. Environ Sci Technol 43:7277–7284

    Article  CAS  PubMed  Google Scholar 

  150. Roebben G et al. (2014) JRC science and policy report: towards a review of the EC recommendation for a definition of the term “Nanomaterial”. Part 2: assessment of collected information concerning the experience with the definition. Eur. Union

    Google Scholar 

  151. (2011) https://www.nano.gov/sites/default/files/pub_resource/nni_2011_ehs_research_strategy.pdf

  152. Raies AB, Bajic VB (2016) In silico toxicology: computational methods for the prediction of chemical toxicity. Wiley Interdiscip Rev Comput Mol Sci 6:147–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Ying J, Zhang T, Tang M (2015) Metal oxide nanomaterial QNAR models: available structural descriptors and understanding of toxicity mechanisms. Nanomaterials 5:1620–1637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Fourches D, Pu D, Tropsha A (2011) Exploring quantitative nanostructure—activity relationships (QNAR) modeling as a tool for predicting biological effects of manufactured nanoparticles. Comb Chem High Throughput Screen 1;14(3):217–225

    Google Scholar 

  155. Damoiseaux R, George S, Li M et al (2011) No time to lose—high throughput screening to assess nanomaterial safety. Nanoscale 3:1345–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Clark KA, White RH, Silbergeld EK (2011) Predictive models for nanotoxicology: current challenges and future opportunities. Regul Toxicol Pharmacol 59:361–363

    Article  CAS  PubMed  Google Scholar 

  157. Todeschini RCV (2000) Handbook of molecular descriptors. Wiley-VCH, Weinheim, pp 927–933

    Book  Google Scholar 

  158. Mukherjee D, Royce SG, Sarkar S et al (2014) Modeling in vitro cellular responses to silver nanoparticles. J Toxicol 2014:852890. 13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeria De Matteis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

De Matteis, V., Rinaldi, R. (2018). Toxicity Assessment in the Nanoparticle Era. In: Saquib, Q., Faisal, M., Al-Khedhairy, A., Alatar, A. (eds) Cellular and Molecular Toxicology of Nanoparticles. Advances in Experimental Medicine and Biology, vol 1048. Springer, Cham. https://doi.org/10.1007/978-3-319-72041-8_1

Download citation

Publish with us

Policies and ethics