Skip to main content

How to Characterize Chemical Reactions Occurring in Muscle Fibers?

  • Chapter
  • First Online:
  • 410 Accesses

Abstract

This chapter describes how perturbation analysis methods are used to characterize chemical reactions taking place in muscle fibers. The perturbations include the changes in concentrations of small ligands (ATP and phosphate), length (step and sinusoidal), force, pressure, and temperature. It further discusses the details of sinusoidal analysis, and its correlation with step analysis. It also discusses how series compliance affects the kinetic measurements.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbott RH, Steiger GJ (1977) Temperature and amplitude dependence of tension transients in glycerinated skeletal and insect fibrillar muscle. J Physiol 266:13–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bershitsky SY, Tsaturyan AK (2002) The elementary force generation process probed by temperature and length perturbations in muscle fibres from the rabbit. J Physiol 540:971–988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buchthal F (1951) The rheology of the cross striated muscle fibre and its minute structural interpretation. Pubbl Staz Zool Napoli 23:115–146

    Google Scholar 

  • Buchthal F, Rosenfalck P (1957) Elastic properties of striated muscle. In: Tissue Elasticity (Am Physiol Soc) 73–97.

    Google Scholar 

  • Dantzig J, Goldman Y, Millar NC, Lacktis J, Homsher E (1992) Reversal of the cross-bridge force-generating transition by the photogeneration of phosphate in rabbit psoas muscle fibers. J Physiol 451:247–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fortune NS, Geeves MA, Ranatunga KW (1991) Tension responses to rapid pressure release in glycerinated rabbit muscle fibers. Proc Natl Acad Sci (USA) 88:7323–7327

    Article  CAS  Google Scholar 

  • Galler S, Wang BG, Kawai M (2005) Elementary steps of the cross-bridge cycle in fast-twitch fiber types from rabbit skeletal muscles. Biophys J 89:3248–3260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldman YE, Hibberd MG, Trentham DR (1984a) Initiation of active contraction by photogeneration of adenosine-5’-triphosphate in rabbit psoas muscle fibres. J Physiol 354:605–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldman YE, Hibberd MG, Trentham DR (1984b) Relaxation of rabbit psoas muscle fibres from rigor by photochemical generation of adenosine-5’-triphosphate. J Physiol 354:577–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heinl P, Kuhn HJ, Ruegg JC (1974) Tension responses to quick length changes of glycerinated skeletal muscle fibres from the frog and tortoise. J Physiol 237:243–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill AV (1949) The abrupt transition from rest to activity in muscle. Proc R Soc Lond B Biol Sci 136:399–420

    Article  CAS  PubMed  Google Scholar 

  • Huxley AF (1957) Muscle structure and theories of contraction. Prog Biophys Chem 7:255–318

    CAS  Google Scholar 

  • Huxley AF (1974) Muscular contraction. J Physiol 243:1–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huxley AF, Simmons RM (1971) Proposed mechanism of force generation in striated muscle. Nature 233:533–538

    Article  CAS  PubMed  Google Scholar 

  • Huxley AF, Simmons RM (1972) Mechanical transients and the origin of muscular force. Cold Spring Hbr Symp on Quant Biol 37:669–680

    Article  Google Scholar 

  • Huxley HE, Stewart A, Sosa H, Irving T (1994) X-ray diffraction measurements of the extensibility of actin and myosin filaments in contracting muscle. Biophys J 67:2411–2421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawai M (1978) Head rotation or dissociation? A study of exponential rate processes in chemically skinned rabbit muscle fibers when MgATP concentration is changed. Biophys J 22:97–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawai M (2003) What do we learn by studying the temperature effect on isometric tension and tension transients in mammalian striated muscle fibres?. J Muscle Res Cell Motil 24:127–138

    Article  PubMed  Google Scholar 

  • Kawai M, Brandt PW (1980) Sinusoidal analysis: a high resolution method for correlating biochemical reactions with physiological processes in activated skeletal muscles of rabbit, frog and crayfish. J Muscle Res Cell Mot 1:279–303

    Article  CAS  Google Scholar 

  • Kawai M, Halvorson H (1989) Role of MgATP and MgADP in the crossbridge kinetics in chemically skinned rabbit psoas fibers. Study of a fast exponential process C. Biophys J 55:595–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawai M, Halvorson HR (1991) Two step mechanism of phosphate release and the mechanism of force generation in chemically skinned fibers of rabbit psoas. Biophys J 59:329–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawai M, Saeki Y, Zhao Y (1993) Cross-bridge scheme and the kinetic constants of elementary steps deduced from chemically skinned papillary and trabecular muscles of the ferret. Circ Res 73:35–50

    Article  CAS  PubMed  Google Scholar 

  • Kawai M, Zhao Y (1993) Cross-bridge scheme and force per cross-bridge state in skinned rabbit psoas muscle fibers. Biophys J 65:638–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu X, Tobacman LS, Kawai M (2006) Temperature-dependence of isometric tension and cross-bridge kinetics of cardiac muscle fibers reconstituted with a tropomyosin internal deletion mutant. Biophys J 91:4230–4240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Machin KE, Pringle JW (1960) The physiology of insect fibrillar muscle. III. The effect of sinusoidal changes of length on a beetle flight muscle. Proc R Soc Lond B Biol Sci 152:311–330

    Article  CAS  PubMed  Google Scholar 

  • Piazzesi G, Lucii L, Lombardi V (2002) The size and the speed of the working stroke of muscle myosin and its dependence on the force. J Physiol 545:145–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Podolsky RJ (1960) Kinetics of muscular contraction: the approach to the steady state. Nature 188:666–668

    Article  CAS  PubMed  Google Scholar 

  • Pringle JW (1967) The contractile mechanism of insect fibrillar muscle. Prog Biophys Mol Biol 17:1–60

    Article  CAS  PubMed  Google Scholar 

  • Thirlwell H, Corrie JE, Reid GP, Trentham DR, Ferenczi MA (1994) Kinetics of relaxation from rigor of permeabilized fast-twitch skeletal fibers from the rabbit using a novel caged ATP and apyrase. Biophys J 67:2436–2447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thorson J, White DC (1969) Distributed representations for actin-myosin interaction in the oscillatory contraction of muscle. Biophys J 9:360–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wakabayashi K, Sugimoto Y, Tanaka H, Ueno Y, Takezawa Y, Amemiya Y (1994) X-ray diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction. Biophys J 67:2422–2435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang G, Ding W, Kawai M (1999) Does thin filament compliance diminish the cross-bridge kinetics? A study in rabbit psoas fibers. Biophys J 76:978–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang G, Kawai M (2001) Effect of temperature on elementary steps of the cross-bridge cycle in rabbit soleus slow-twitch muscle fibres. J Physiol 531:219–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Kawai M (2013) A re-interpretation of the rate of tension redevelopment (kTR) in active muscle. J Muscle Res Cell Motil 34:407–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White DC, Thorson J (1972) Phosphate starvation and the nonlinear dynamics of insect fibrillar flight muscle. J Gen Physiol 60:307–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Kawai M (1994) Kinetic and Thermodynamic studies of the cross-bridge cycle in rabbit psoas muscle fibers. Biophys J 67:1655–1668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masataka Kawai .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kawai, M. (2018). How to Characterize Chemical Reactions Occurring in Muscle Fibers?. In: Biomechanics, Muscle Fibers, and How to Interface Experimental Apparatus to a Computer. Springer, Cham. https://doi.org/10.1007/978-3-319-72036-4_3

Download citation

Publish with us

Policies and ethics