Skip to main content

Reaction Processes (Chemical Kinetics) and Their Application to Muscle Biology

  • Chapter
  • First Online:
Biomechanics, Muscle Fibers, and How to Interface Experimental Apparatus to a Computer

Abstract

This chapter describes basics of cross-bridge models, and how to characterize muscle fiber (and myofibril) preparations in terms of elementary steps of the cross-bridge cycle. Models with two states, three states, and multi states are examined. Mathematical derivation to relate observed rate constants to the fundamental rate constants of the elementary steps are presented. The temperature effect of the rate constants, their activation energy, and reaction coordinates are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott RH (1972) An interpretation of the effects of fiber length and calcium on the mechanical properties of insect flight muscle. Cold Spring Hbr Symp on Quant Biol 37:647–654

    Article  Google Scholar 

  • Arrhenius SA (1889) Ãœber die Dissociationswärme und den Einfluß der Temperatur auf den Dissociationsgrad der Elektrolyte. Z Phys Chem 4:96–116

    Google Scholar 

  • Brenner B (1988) Effect of Ca2+ on cross-bridge turn over kinetics in skinned single rabbit psoas fibres: implications for regulation of muscle contraction. Proc Natl Acad Sci (USA) 83:3265–3269

    Article  Google Scholar 

  • Gutfreund H (1995) Kinetics for life sciences. Receptors, transmitters and chatalysts. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Huxley AF (1957) Muscle structure and theories of contraction. Prog Biophys Chem 7:255–318

    CAS  Google Scholar 

  • Huxley AF, Simmons RM (1971) Proposed mechanism of force generation in striated muscle. Nature 233:533–538

    Article  CAS  PubMed  Google Scholar 

  • Julian FJ, Sollins KR, Sollins MR (1974) A model for the transient and steady-state mechanical behavior of contracting muscle. Biophys J 14:546–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawai M, Halvorson H (1989) Role of MgATP and MgADP in the crossbridge kinetics in chemically skinned rabbit psoas fibers. Study of a fast exponential process C. Biophys J 55:595–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawai M, Halvorson HR (1991) Two step mechanism of phosphate release and the mechanism of force generation in chemically skinned fibers of rabbit psoas. Biophys J 59:329–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawai M, Halvorson HR (2007) Force transients and minimum cross-bridge models in muscular contraction. J Muscle Res Cell Motil 28:371–395

    Article  PubMed  Google Scholar 

  • Moore WJ (1983) Basic physical chemistry. Prentice-Hall, Inc Publisher, Englewood Cliffs, NJ 07632, USA.

    Google Scholar 

  • Murase M, Tanaka H, Nishiyama K, Shimizu H (1986) A three-state model for oscillation in muscle: sinusoidal analysis. J Muscle Res Cell Motil 7:2–10

    Article  CAS  PubMed  Google Scholar 

  • Thorson J, White DC (1969) Distributed representations for actin-myosin interaction in the oscillatory contraction of muscle. Biophys J 9:360–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thorson J, White DC (1983) Role of cross-bridge distortion in the small-signal mechanical dynamics of insect and rabbit striated muscle. J Physiol 343:59–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van ‘t Hoff JH (1884) Études de Dynamique chimique.

    Google Scholar 

  • Wang G, Kawai M (2001) Effect of temperature on elementary steps of the cross-bridge cycle in rabbit soleus slow-twitch muscle fibres. J Physiol 531:219–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Kawai M (2013) A re-interpretation of the rate of tension redevelopment (kTR) in active muscle. J Muscle Res Cell Motil 34:407–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Kawai M (1994) Kinetic and Thermodynamic studies of the cross-bridge cycle in rabbit psoas muscle fibers. Biophys J 67:1655–1668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Kawai M (1996) Inotropic agent EMD 53998 weakens nucleotide and phosphate binding to cross bridges in porcine myocardium. Am J Physiol 271:H1394–H1406. (Heart Circ Physiol 40)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masataka Kawai .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kawai, M. (2018). Reaction Processes (Chemical Kinetics) and Their Application to Muscle Biology. In: Biomechanics, Muscle Fibers, and How to Interface Experimental Apparatus to a Computer. Springer, Cham. https://doi.org/10.1007/978-3-319-72036-4_2

Download citation

Publish with us

Policies and ethics