Skip to main content

Integrated Process Chain for Aerostructural Wing Optimization and Application to an NLF Forward Swept Composite Wing

  • Conference paper
  • First Online:
AeroStruct: Enable and Learn How to Integrate Flexibility in Design (AeroStruct 2015)

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 138))

Included in the following conference series:

Abstract

This contribution introduces an integrated process chain for aerostructural wing optimization based on high fidelity simulation methods. The architecture of this process chain enables two of the most promising future technologies in commercial aircraft design in the context of multidisciplinary design optimization (MDO). These technologies are natural laminar flow (NLF) and aeroelastic tailoring using carbon fiber reinforced plastics (CFRP). With this new approach the application of MDO to an NLF forward swept composite wing will be possible. The main feature of the process chain is the hierarchical decomposition of the optimization problem into two levels. On the highest level the wing planform including twist and airfoil thickness distributions as well as the orthotropy direction of the composite structure will be optimized. The lower optimization level includes the wing box sizing for essential load cases considering the static aeroelastic deformations. Additionally, the airfoil shapes are transferred from a given NLF wing design. The natural laminar flow is considered by prescribing laminar-turbulent transition locations. Results of wing design studies and a wing optimization using the process chain are presented for a forward swept wing aircraft configuration. The wing optimization with 12 design parameters shows a fuel burn reduction in the order of 9% for the design mission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. European Commission, European Aeronautics: A Vision for 2020 (Office for Official Publications of the European Communities, Luxembourg, Belgium, 2001)

    Google Scholar 

  2. European Commision, 2008 Addendum to the Strategic Research Agenda (2008), http://www.acare4europe.com

  3. European Commision, Flightpath 2050 Europe’s Vision for Aviation (Office for Official Publications of the European Communities, Luxembourg, Belgium, 2011)

    Google Scholar 

  4. N. Kroll et al., The MEGAFLOW-project - numerical flow simulation for aircraft. Prog. Ind. Math. ECMI 2004, 3–33 (2005)

    MATH  Google Scholar 

  5. N. Kroll et al., Ongoing activities in shape optimization within the German project MEGADESIGN, in ECCOMAS 2004 (2004)

    Google Scholar 

  6. N. Kroll et al., Flow simulation and shape optimization for aircraft design. J. Comput. Appl. Math. 203, 397–411 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. N. Kroll et al., Ongoing activities in flow simulation and shape optimization within the German megadesign project, in 25th International Congress of the Aeronautical Sciences, ICAS (2006)

    Google Scholar 

  8. N. Kroll et al., MEGADESIGN and MegaOpt - German Initiatives for Aerodynamic Simulation and Optimization in Aircraft Design (Springer, Berlin, Heidelberg, 2009)

    Book  MATH  Google Scholar 

  9. N.R. Gauger, Ongoing activities in shape optimization within the German project MEGADESIGN, in EUCCO2004, Dresden (de), 29.-31.03.2004 (2004)

    Google Scholar 

  10. P. Piperni et al., Preliminary aerostructural optimization of a large business jet. J. Aircr. 44(5), 1422–1438 (2007)

    Article  Google Scholar 

  11. K. Chiba et al., Multidisciplinary design optimization and data mining for transonic regional-jet wing. J. Aircr. 44(4), 1100–1112 (2007)

    Article  Google Scholar 

  12. A. Jameson et al., Multi-point aero-structural optimization of wings including planform variations, in 45th Aerospace Sciences Meeting and Exhibit, AIAA 2007-764 (Reno, Nevada, USA, 2007)

    Google Scholar 

  13. G.K.W. Kenway, J.R.R.A. Martins, Multipoint high-fidelity aerostructural optimization of a transport aircraft configuration. J. Aircr. 51, 144–160 (2014)

    Article  Google Scholar 

  14. G.K.W. Kenway et al., Scalable parallel approach for high-fidelity steady-state aeroelastic analysis and adjoint derivative computations. AIAA J. 52, 935–951 (2014)

    Article  Google Scholar 

  15. R.P. Liem et al., Multi-point, multi-mission, high-fidelity aerostructural optimization of a long-range aircraft configuration, in 14th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference (Indianapolis, USA, 2012)

    Google Scholar 

  16. K.H. Horstmann, T. Streit, in Aerodynamic Wing Design for Transport Aircraft - Today: Hermann Schlichting - 100 Years, vol. 102, ed. by R. Radespiel et al. (Springer, Berlin, Heidelberg, 2009), pp. 130–144

    Google Scholar 

  17. G. Schrauf, Status and perspectives of laminar flow. Aeronaut. J. 109(1102), 639–644 (2005)

    Article  Google Scholar 

  18. J.E. Green, Laminar flow control - back to the future? in 38th Fluid Dynamics Conference and Exhibit, AIAA 2008-3728 (Seattle, Washington, USA, 2008)

    Google Scholar 

  19. G.W. Hanks et al., Natural laminar flow analysis and trade studies. Tech. rep. NASA CR-159029 (National Aeronautics and Space Administration, 1979)

    Google Scholar 

  20. A. Seitz et al., The DLR project LamAiR: design of a NLF forward swept wing for short and medium range transport application, in 29th AIAA Applied Aerodynamics Conference, AIAA Conference Paper AIAA 2011-3526 (2011)

    Google Scholar 

  21. G. Redeker, G. Wichmann, Forward sweep - a favourable concept for a laminar flow wing. J. Aircr. 28, 97–103 (1991)

    Article  Google Scholar 

  22. M. Kruse et al., A conceptual study of a transonic NLF transport aircraft with forward swept wings, in 30th AIAA Applied Aerodynamics Conference, AIAA Conference Paper AIAA 2012-3208 (New Orleans, Louisiana, 2012)

    Google Scholar 

  23. M.H. Shirk et al., Aeroelastic tailoring - theory, practice, and promise. J. Aircr. 23(1), 6–18 (1986)

    Article  Google Scholar 

  24. S. Dähne et al., Steps to feasibility for laminar wing design in a multidisciplinary environment, in ICAS 2014 (2014)

    Google Scholar 

  25. T.F. Wunderlich, Multidisciplinary wing optimization of commercial aircraft with consideration of static aeroelasticity. CEAS Aeronaut. J. 6(3), 407–427 (2015)

    Article  Google Scholar 

  26. J.R.R.A. Martins, A.B. Lambe, Multidisciplinary design optimization: a survey of architectures. AIAA J. 51, 2049–2075 (2013)

    Article  Google Scholar 

  27. A.B. Lambe, J.R.R.A. Martins, Extensions to the design structure matrix for the description of multidisciplinary design analysis and optimization processes. Struct. Multidiscip. Optim. 46, 273–284 (2012)

    Article  MATH  Google Scholar 

  28. R. Kamakoti, W. Shyy, Fluid-structure interaction for aeroelastic applications. Prog. Aerosp. Sci. 40(8), 535–558 (2005)

    Article  Google Scholar 

  29. X.B. Lam et al., Coupled aerostructural design optimization using the kriging model and integrated multiobjective optimization algorithm. J. Optim. Theory Appl. 142(3), 533–556 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. D.P. Raymer, Aircraft Design: A Conceptual Approach (Third Edition, American Institute of Aeronautics and Astronautics, 1999)

    Google Scholar 

  31. C.M. Liersch, M. Hepperle, A unified approach for multidisciplinary preliminary aircraft design, in CEAS European Air and Space Conference (Manchester, United Kingdom, 2009)

    Google Scholar 

  32. M. Galle, Ein Verfahren zur numerischen Simulation kompressibler, reibungsbehafteter Strömungen auf hybriden Netzen. Tech. rep. DLR-Forschungsbericht 99-04. Braunschweig: DLR Institut für Aerodynamik und Strömungstechnik (1999)

    Google Scholar 

  33. T. Gerhold, in Overview of the Hybrid RANS TAU-Code, vol. 89, ed. by N. Kroll, J. Fassbender, MEGAFLOW - Numerical Flow Simulation Tool for Transport Aircraft Design. Notes on Multidisciplinary Design (2005)

    Google Scholar 

  34. D. Schwamborn et al., The DLR TAU-code: recent applications in research and industry, in ECCOMAS CFD 2006 Conference European Conference on Computational Fluid Dynamics (Delft, The Netherlands, 2006)

    Google Scholar 

  35. N. Kroll, J.K. Fassbender, MEGAFLOW - Numerical flow simulation for aircraft design, Braunschweig, in Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM), vol. 89 (2002)

    Google Scholar 

  36. N. Kroll et al., MEGAFLOW - a numerical flow simulation tool for transport aircraft design, in ICAS Congress 2002 (Toronto, Canada, 2002), pp. 1.105.1–1.105.20

    Google Scholar 

  37. S.R. Allmaras et al., Modifications and clarifications for the implementation of the Spalart-Allmaras turbulence model, in Seventh International Conference on Computational Fluid Dynamics (ICCFD7) (2012), pp. 1–11

    Google Scholar 

  38. S. Freund et al., Parametric model generation and sizing of lightweight structures for a multidisciplinary design process, in NAFEMS Konferenz: Berechnung und Simulation - Anwendungen, Entwicklungen, Trends (2014)

    Google Scholar 

  39. M.-H.-1.-3. Military. Composite Materials Handbook, Polymer Matrix Composites: Materials Usage, Design, and Analysis. Vol.3 of 5. US Department of Defense, June 2002

    Google Scholar 

  40. HyperSizer Documentation. Collier Research Corporation. Newport News (2015)

    Google Scholar 

  41. H. Barnewitz, B. Stickan, in Improved Mesh Deformation, ed. by B. Eisfeld et al. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 122 (2013), pp. 219–243

    Google Scholar 

  42. M. Meinel, G.O. Einarsson, The FlowSimulator framework for massively parallel CFD applications, in PARA 2010 conference (Reykjavik, Iceland, 6–9 June 2010)

    Google Scholar 

  43. L. Reimer et al., Multidisciplinary analysis workflow with the flow simulator, in Proceedings of the Onera Scientific Day 2012—CFD Workflow: Mesh, Solving, Visualizing, ed. by C. Benoit et al., vol. 19 (Amphithéâtre Becquerel, École Polytechnique, Palaiseau, 2012), pp. 23–30

    Google Scholar 

  44. G. Wilke, Multi-objective optimizations in rotor aerodynamics using variable fidelity simulations, in 39th European Rotorcraft Forum (2013), pp. 1–13

    Google Scholar 

  45. D.R. Jones et al., Efficient global optimization of expensive black-box functions. J. Global Optim. 13, 455–492 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  46. A. Forrester et al., Engineering Design via Surrogate Modelling: A Practical Guide (Wiley, New York, 2008)

    Book  Google Scholar 

  47. D.G. Krige, A statistical approach to some basic mine valuation problems on the witwatersrand. J. Chem. Metall. Min. Soc. S. Afr. 52(6), 119–139 (1951)

    Google Scholar 

  48. M. Kintscher et al., Design of a smart leading edge device for low speed wind tunnel tests in the European project SADE. Int. J. Struct. Integr. 2(4), 383–405 (2011)

    Article  Google Scholar 

  49. G.K.W. Kenway et al., Aerostructural optimization of the common research model configuration, in 15th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference (Georgia, USA, 2014)

    Google Scholar 

  50. T.F. Wunderlich, Multidisziplinärer Entwurf und Optimierung von Flügeln für Verkehrsflugzeuge, in Deutscher Luft- und Raumfahrtkongress, Aachen. DGLR-Tagungsband - Ausgewählte Manuskripte DLRK2009-1181 (2009)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the German Federal Ministry for Economic Affairs and Energy. The authors wish to thank the Institute of Aerodynamics and Flow Technology and the Institute of Composite Structures and Adaptive Systems for providing the support of many colleagues, the IT infrastructure and the computing resources for the complex computations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Wunderlich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wunderlich, T., Reimer, L. (2018). Integrated Process Chain for Aerostructural Wing Optimization and Application to an NLF Forward Swept Composite Wing. In: Heinrich, R. (eds) AeroStruct: Enable and Learn How to Integrate Flexibility in Design. AeroStruct 2015. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 138. Springer, Cham. https://doi.org/10.1007/978-3-319-72020-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72020-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72019-7

  • Online ISBN: 978-3-319-72020-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics