Amorphous Drug Formulation



Modern drug discovery tools have biased towards compounds with poor aqueous solubility even though the importance of drug-like properties has long been recognized [1], and the trend continues to deteriorate [2]. The poor solubility of these drug candidates imposes great challenges to pharmaceutical scientists and engineers who are ultimately responsible for developing a bioavailable drug product to support the clinical programs and commercialization, if successful. A poorly water soluble drug candidate not only may lengthen the formulation development phase, increase the resource demands, delay the clinical trials due to insufficient in vivo exposure, but also may impact the ultimate success of the entire program due to suboptimal bioavailability [3].


  1. 1.
    Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23:3–25CrossRefGoogle Scholar
  2. 2.
    Loftsson T, Brewster ME (2010) Pharmaceutical applications of cyclodextrins: basic science and product development. J Pharm Pharmacol 62:1607–1621CrossRefGoogle Scholar
  3. 3.
    Kola I, Landis J (2004) Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov 3:711–716CrossRefGoogle Scholar
  4. 4.
    Pouton CW (1997) Formulation of self-emulsifying drug delivery systems. Adv Drug Deliv Rev 25:47–58CrossRefGoogle Scholar
  5. 5.
    Neslihan Gursoy R, Benita S (2004) Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs. Biomed Pharmcother 58:173–182CrossRefGoogle Scholar
  6. 6.
    Mistry RB, Sheth NS (2011) A review: self emulsifying drug delivery system. Int J Pharm Pharm Sci 3(Suppl 22):23–28Google Scholar
  7. 7.
    Gelperina S, Kisich K, Iseman MD, Heifets L (2005) The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. Am J Respir Crit Care Med 172:1487–1490CrossRefGoogle Scholar
  8. 8.
    De Jong WH, Borm PJ (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomed 3:133–149CrossRefGoogle Scholar
  9. 9.
    Kaialy W, Al Shafiee M (2016) Recent advances in the engineering of nanosized active pharmaceutical ingredients: promises and challenges. Adv Colloid Interface Sci 228:71–91CrossRefGoogle Scholar
  10. 10.
    Hancock BC, Zografi G (1997) Characteristics and significance of the amorphous state in pharmaceutical systems. J Pharm Sci 86:1–12CrossRefGoogle Scholar
  11. 11.
    He Y, Ho C (2015) Amorphous solid dispersions: utilization and challenges in drug discovery and development. J Pharm Sci 104:3237–3258CrossRefGoogle Scholar
  12. 12.
    Vasconcelos T, Marques S, das Neves J, Sarmento B (2016) Amorphous solid dispersions: rational selection of a manufacturing process. Adv Drug Deliv Rev 100:85–101CrossRefGoogle Scholar
  13. 13.
    Zhu T, Chiu Y, Doan T, Klein C, Chang M, Brun S, Hanna G, Awni W (2005) New tablet formulation of lopinavir/ritonavir is bioequivalent to the capsule at a dose of 800/200 mg. In: 45th Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC), Washington, DC, Poster H-1894Google Scholar
  14. 14.
    Parks GS, Huffman HM, Cattor FR (1928) Studies on glass II: the transition between the glassy and liquid states in the case of glucose. J Phys Chem 32:1366–1379CrossRefGoogle Scholar
  15. 15.
    Stagner WC, Guillory JK (1979) Physical characterization of solid iopanoic acid forms. J Pharm Sci 68:1005–1009CrossRefGoogle Scholar
  16. 16.
    Corrigan OI, Holohan EM, Sabra K (1984) Amorphous forms of thiazide diuretics prepared by spray-drying. Int J Pharm 18:195–200CrossRefGoogle Scholar
  17. 17.
    Elamin AA, Ahlneck C, Alderborn G, Nystrom C (1994) Increased metastable solubility of milled griseofulvin, depending on the formation of a disordered surface structure. Int J Pharm 111:159–170CrossRefGoogle Scholar
  18. 18.
    Hancock BC, Parks M (2000) What is the true solubility advantage for amorphous pharmaceuticals? Pharm Res 17:397–403CrossRefGoogle Scholar
  19. 19.
    Alonzo DE, Zhang GGZ, Zhou D, Gao Y, Taylor LS (2010) Understanding the behavior of amorphous pharmaceutical systems during dissolution. Pharm Res 27:608–618CrossRefGoogle Scholar
  20. 20.
    Alonzo DE, Raina S, Zhou D, Gao Y, Zhang GGZ, Taylor LS (2012) Characterizing the impact of hydroxypropylmethyl cellulose on the growth and nucleation kinetics of felodipine from supersaturated solutions. Cryst Grow Des 12:1538–1547CrossRefGoogle Scholar
  21. 21.
    Simonelli AP, Mehta SC, Higuchi WI (1970) Inhibition of sulfathiazole crystal growth by polyvinylpyrrolidone. J Pharm Sci 59:633–638CrossRefGoogle Scholar
  22. 22.
    Holder GA, Thorne J (1979) Inhibition of crystallization by polymers. Polym Prepr (Am Chem Soc Div Polym Chem) 20:766–769Google Scholar
  23. 23.
    Oner M, Calvert P (1993) Influence of polymer architecture on crystal growth inhibition. Polym Mater Sci Eng 69:166–167Google Scholar
  24. 24.
    Agarwal P, Berglund KA (2004) Effect of polymeric additives on calcium carbonate crystallization as monitored by nephelometry. Cryst Growth Des 4:479–483CrossRefGoogle Scholar
  25. 25.
    Inada T, Modak PR (2006) Growth control of ice crystals by poly(vinyl alcohol) and antifreeze protein in ice slurries. Chem Eng Sci 61:3149–3158CrossRefGoogle Scholar
  26. 26.
    Vandecruys R, Peeters J, Verreck G, Brewster ME (2007) Use of a screening method to determine excipients which optimize the extent and stability of supersaturated drug solutions and application of this system to solid formulation design. Int J Pharm 342:168–175CrossRefGoogle Scholar
  27. 27.
    Lindfors L, Forssen S, Westergren J, Olsson U (2008) Nucleation and crystal growth in supersaturated solutions of model drug. J Colloid Interface Sci 325:404–413CrossRefGoogle Scholar
  28. 28.
    Raghavan SL, Trividic A, Davis AF, Hadgraft J (2001) Crystallization of hydrocortisone acetate: influence of polymers. Int J Pharm 212:213–221CrossRefGoogle Scholar
  29. 29.
    Mehta SC (1969) Mechanistic studies of linear single crystal growth rates of sulfathiazole and their inhibition by polyvinyl pyrrolidone. Preparation and dissolution of high-energy sulfathiazole polyvinyl pyrrolidone coprecipitates, University of Michigan, Ann Arbor, MI, USA, pp 136Google Scholar
  30. 30.
    Sekikawa H, Nakano M, Arita T (1978) Inhibitory effect of poly(vinylpyrrolidone) on the crystallization of drugs. Chem Pharm Bull 26:118–126CrossRefGoogle Scholar
  31. 31.
    Ziller KH, Rupprecht H (1988) Control of crystal growth in drug suspensions. 1. Design of a control unit and application to acetaminophen suspensions. Drug Dev Ind Pharm 14:2341–2370CrossRefGoogle Scholar
  32. 32.
    Ziller KH, Rupprecht H (1990) Control of crystal growth in drug suspensions. III. Isothermal crystallization in the presence of polymers. PZ Wiss 3:147–152Google Scholar
  33. 33.
    Ma X, Taw J, Chiang C-M (1996) Control of drug crystallization in transdermal matrix system. Int J Pharm 142:115–119CrossRefGoogle Scholar
  34. 34.
    Wen H, Morris KR, Park K (2008) Synergic effects of polymeric additives on dissolution and crystallization of acetaminophen. Pharm Res 25:349–358CrossRefGoogle Scholar
  35. 35.
    Konno H, Taylor LS (2006) Influence of different polymers on the crystallization tendency of molecularly dispersed amorphous felodipine. J Pharm Sci 95:2692–2705CrossRefGoogle Scholar
  36. 36.
    Konno H, Taylor LS (2008) Ability of different polymers to inhibit the crystallization of amorphous felodipine in the presence of moisture. Pharm Res 25:969–978CrossRefGoogle Scholar
  37. 37.
    Wattis JAD, Coveney PV (1997) General nucleation theory with inhibition for chemically reacting systems. J Chem Phys 106:9122–9140CrossRefGoogle Scholar
  38. 38.
    Ilevbare GA, Liu H, Edgar KJ, Taylor LS (2013) Maintaining supersaturation in aqueous drug solutions: impact of different polymers on induction times. Cryst Growth Des 13:740–751CrossRefGoogle Scholar
  39. 39.
    Alonzo DE, Gao Y, Zhou D, Mo H, Zhang GGZ, Taylor LS (2011) Dissolution and precipitation behavior of amorphous solid dispersions. J Pharm Sci 100:3316–3331CrossRefGoogle Scholar
  40. 40.
    Van Eerdenbrugh B, Alonzo DE, Taylor LS (2011) Influence of particle size on the ultraviolet spectrum of particulate-containing solutions: implications for in-situ concentration monitoring using UV/Vis fiber-optic probes. Pharm Res 28:1643–1652CrossRefGoogle Scholar
  41. 41.
    Raina SA, Zhang GGZ, Alonzo DE, Wu J, Zhu D, Catron ND, Gao Y, Taylor LS (2014) Enhancements and limits in drug membrane transport using supersaturated solutions of poorly water-soluble drugs. J Pharm Sci 103:2736–2748CrossRefGoogle Scholar
  42. 42.
    Hsieh Y-L, Ilevbare GA, Van Eerdenbrugh B, Box KJ, Sanchez-Felix MV, Taylor LS (2012) pH-induced precipitation behavior of weakly basic compounds: determination of extent and duration of supersaturation using potentiometric titration and correlation to solid state properties. Pharm Res 29:2738–2753CrossRefGoogle Scholar
  43. 43.
    Tachibana T, Nakamura A (1965) A methode for preparing an aqueous colloidal dispersion of organic materials by using water-soluble polymers: dispersion of β-carotene by polyvinylpyrrolidone. Colloid Polym Sci 203:130–133Google Scholar
  44. 44.
    Ilevbare GA, Taylor LS (2013) Liquid-liquid phase separation in highly supersaturated aqueous solutions of poorly water-soluble drugs: implications for solubility enhancing formulations. Cryst Growth Des 13:1497–1509CrossRefGoogle Scholar
  45. 45.
    Bonnett PE, Carpenter KJ, Dawson S, Davey RJ (2003) Solution crystallisation via a submerged liquid-liquid phase boundary: oiling out. Chem Commun 698–699Google Scholar
  46. 46.
    Derdour L (2010) A method to crystallize substances that oil out. Chem Eng Res Des 88:1174–1181CrossRefGoogle Scholar
  47. 47.
    Veesler S, Lafferrère L, Garcia E, Hoff C (2003) Phase transitions in supersaturated drug solution. Org Proc Res Dev 7:983–989CrossRefGoogle Scholar
  48. 48.
    Taylor LS, Zhang GGZ (2016) Physical chemistry of supersaturated solutions and implications for oral absorption. Adv Drug Deliv Rev 101:122–142CrossRefGoogle Scholar
  49. 49.
    Almeida e Sousa L, Reutzel-Edens SM, Stephenson GA, Taylor LS (2016) Supersaturation potential of salt, co-crystal, and amorphous forms of a model weak base. Cryst Grow Des 16:737–748CrossRefGoogle Scholar
  50. 50.
    Tho I, Liepold B, Rosenberg J, Mägerlein M, Brandl M, Fricker G (2010) Formation of nano/micro-dispersions with improved dissolution properties upon dispersion of ritonavir melt extrudate in aqueous media. Eur J Pharm Sci 40:25–32CrossRefGoogle Scholar
  51. 51.
    Kanzer J, Hupfeld S, Vasskog T, Tho I, Hölig P, Mägerlein M, Fricker G, Brandl M (2010) In situ formation of nanoparticles upon dispersion of melt extrudate formulations in aqueous medium assessed by asymmetrical flow field-flow fractionation. J Pharm Biomed Anal 53:359–365CrossRefGoogle Scholar
  52. 52.
    Frank KJ, Westedt U, Rosenblatt KM, Hölig P, Rosenberg J, Mägerlein M, Fricker G, Brandl M (2012) The amorphous solid dispersion of the poorly soluble ABT-102 forms nano/microparticulate structures in aqueous medium: impact on solubility. Int J Nanomed 7:5757–5768Google Scholar
  53. 53.
    Harmon P, Galipeau K, Xu W, Brown C, Wuelfing WP (2016) Mechanism of dissolution-induced nanoparticle formation from a copovidone-based amorphous solid dispersion. Mol Pharm 13:1467–1481CrossRefGoogle Scholar
  54. 54.
    Tadmor Z, Klein I (1970) Engineering principles of plasticating extrusion. Van Nostrand Reinhold, New York, pp 152–158Google Scholar
  55. 55.
    Breitenbach J (2002) Melt extrusion: from process to drug delivery technology. Eur J Pharm Biopharm 54:107–117CrossRefGoogle Scholar
  56. 56.
    Chokshi R, Zia H (2004) Hot-melt extrusion technique: a review. Iran J Pharm Res 3:3–16Google Scholar
  57. 57.
    Breitenbach J (2006) Melt extrusion can bring new benefits to HIV therapy: the example of Kaletra® tablets. Am J Drug Deliv 4:61–64CrossRefGoogle Scholar
  58. 58.
    Crowley MM, Zhang F, Repka MA, Thumma S, Upadhye SB, Kumar Battu S, McGinity JW, Martin C (2007) Pharmaceutical applications of hot-melt extrusion: Part I. Drug Dev Ind Pharm 33:909–926CrossRefGoogle Scholar
  59. 59.
    Repka MA, Battu SK, Upadhye SB, Thumma S, Crowley MM, Zhang F, Martin C, McGinity JW (2007) Pharmaceutical applications of hot-melt extrusion: Part II. Drug Dev Ind Pharm 33:1043–1057CrossRefGoogle Scholar
  60. 60.
    Douroumis D (2012) Hot-melt extrusion: pharmaceutical applications,1st edn. Wiley, Chichester, p 382CrossRefGoogle Scholar
  61. 61.
    De Jaeghere W, De Beer T, Van Bocxlaer J, Remon JP, Vervaet C (2015) Hot-melt extrusion of polyvinyl alcohol for oral immediate release applications. Int J Pharm 492:1–9CrossRefGoogle Scholar
  62. 62.
    Agrawal AM, Dudhedia MS, Zimny E (2016) Hot melt extrusion: development of an amorphous solid dispersion for an insoluble drug from mini-scale to clinical scale. AAPS PharmSciTech 17:133–147CrossRefGoogle Scholar
  63. 63.
    Patil H, Tiwari RV, Repka MA (2016) Hot-melt extrusion: from theory to application in pharmaceutical formulation. AAPS PharmSciTech 17:20–42CrossRefGoogle Scholar
  64. 64.
    Paudel A, Worku ZA, Meeus J, Guns S, Van den Mooter G (2013) Manufacturing of solid dispersions of poorly water soluble drugs by spray drying: formulation and process considerations. Int J Pharm 453:253–284CrossRefGoogle Scholar
  65. 65.
    Sóti PL, Bocz K, Pataki H, Eke Z, Farkas A, Verreck G, Kiss É, Fekete P, Vigh T, Wagner I, Nagy ZK, Marosi G (2015) Comparison of spray drying, electroblowing and electrospinning for preparation of Eudragit E and itraconazole solid dispersions. Int J Pharm 494:23–30CrossRefGoogle Scholar
  66. 66.
    Fong SYK, Ibisogly A, Bauer-Brandl A (2015) Solubility enhancement of BCS Class II drug by solid phospholipid dispersions: spray drying versus freeze-drying. Int J Pharm 496:382–391CrossRefGoogle Scholar
  67. 67.
    Singh A, Van den Mooter G (2016) Spray drying formulation of amorphous solid dispersions. Adv Drug Deliv Rev 100:27–50CrossRefGoogle Scholar
  68. 68.
    Dobry DE, Settell DM, Baumann JM, Ray RJ, Graham LJ, Beyerinck RA (2009) A model-based methodology for spray-drying process development. J Pharm Innov 4:133–142CrossRefGoogle Scholar
  69. 69.
    Paudel A, Loyson Y, Van den Mooter G (2013) An investigation into the effect of spray drying temperature and atomizing conditions on miscibility, physical stability, and performance of naproxen-pvp K 25 solid dispersions. J Pharm Sci 102:1249–1267CrossRefGoogle Scholar
  70. 70.
    Vehring R, Foss WR, Lechuga-Ballesteros D (2007) Particle formation in spray drying. J Aerosol Sci 38:728–746CrossRefGoogle Scholar
  71. 71.
    Çelik M, Wendell SC (2009) Chapter 5. Spray drying and pharmaceutical applications. In: Parikh DM (ed) Handbook of pharmaceutical granulation technology, 3rd edn. CRC Press, New York, pp 98–125Google Scholar
  72. 72.
    Mezhericher M, Levy A, Borde I (2010) Theoretical models of single droplet drying kinetics: a review. Dry Technol 28:278–293CrossRefGoogle Scholar
  73. 73.
    Vicente J, Pinto J, Menezes J, Gaspar F (2013) Fundamental analysis of particle formation in spray drying. Powder Technol 247:1–7CrossRefGoogle Scholar
  74. 74.
    Zhou D, Qiu Y (2009) Understanding biopharmaceutics properties for pharmaceutical product development and manufacturing I – oral absorption and the biopharmaceutics classification system. J Val Technol 15:62–72Google Scholar
  75. 75.
    Zhou D (2009) Understanding physicochemical properties for pharmaceutical product development and manufacturing – stability and excipient compatibility. J Val Technol 15:36–47Google Scholar
  76. 76.
    Zhou D, Qiu Y (2010) Understanding biopharmaceutics properties for pharmaceutical product development and manufacturing II – dissolution and in-vitro-in vivo correlation. J Val Technol 16:57–70CrossRefGoogle Scholar
  77. 77.
    Benet LZ (2010) Predicting drug disposition via application of a biopharmaceutics drug disposition classification system. Basic Clin Pharmacol Toxicol 106:162–167CrossRefGoogle Scholar
  78. 78.
    Wu C-Y, Benet LZ (2005) Predicting drug disposition via application of BCS: transport/absorption/elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm Res 22:11–23CrossRefGoogle Scholar
  79. 79.
    Benet LZ (2013) The role of BCS (biopharmaceutics classification system) and BDDCS (biopharmaceutics drug disposition classification system) in drug development. J Pharm Sci 102:34–42CrossRefGoogle Scholar
  80. 80.
    Amidon GL, Lennernäs H, Shah VP, Crison JR (1995) A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res 12:413–420CrossRefGoogle Scholar
  81. 81.
    Zhou D (2003) Molecular mobility, physical stability, and transformation kinetics of amorphous and hydrated pharmaceutical solids. University of Minnesota, Minneapolis, MN, 270 ppGoogle Scholar
  82. 82.
    Zhou D, Zhang GGZ, Law D, Grant DJW, Schmitt EA (2008) Thermodynamics, molecular mobility and crystallization kinetics of amorphous griseofulvin. Mol Pharm 5:927–936CrossRefGoogle Scholar
  83. 83.
    Zhou D, Grant David JW, Zhang Geoff GZ, Law D, Schmitt Eric A (2007) A calorimetric investigation of thermodynamic and molecular mobility contributions to the physical stability of two pharmaceutical glasses. J Pharm Sci 96:71–83CrossRefGoogle Scholar
  84. 84.
    Zhou D, Zhang GGZ, Law D, Grant DJW, Schmitt EA (2002) Physical stability of amorphous pharmaceuticals: importance of configurational thermodynamic quantities and molecular mobility. J Pharm Sci 91:1863–1872CrossRefGoogle Scholar
  85. 85.
    Knapik J, Wojnarowska Z, Grzybowska K, Tajber L, Mesallati H, Paluch KJ, Paluch M (2016) Molecular dynamics and physical stability of amorphous nimesulide drug and its binary drug-polymer systems. Mol Pharm 13:1937–1946CrossRefGoogle Scholar
  86. 86.
    Szczurek J, Rams-Baron M, Knapik-Kowalczuk J, Antosik A, Szafraniec J, Jamóz W, Dulski M, Jachowicz R, Paluch M (2017) Molecular dynamics, recrystallization behavior, and water solubility of the amorphous anticancer agent bicalutamide and its polyvinylpyrrolidone mixtures. Mol Pharm 14:1071–1081CrossRefGoogle Scholar
  87. 87.
    Kossena GA, Charman WN, Boyd BJ, Porter CJH (2005) Influence of the intermediate digestion phases of common formulation lipids on the absorption of a poorly water-soluble drug. J Pharm Sci 94:481–492CrossRefGoogle Scholar
  88. 88.
    Custodio JM, Wu C-Y, Benet LZ (2008) Predicting drug disposition, absorption/elimination/transporter interplay and the role of food on drug absorption. Adv Drug Deliv Rev 60:717–733CrossRefGoogle Scholar
  89. 89.
    Shah N, Iyer RM, Mair H-J, Choi DS, Tian H, Diodone R, Fähnrich K, Pabst-Ravot A, Tang K, Scheubel E, Grippo JF, Moreira SA, Go Z, Mouskountakis J, Louie T, Ibrahim PN, Sandhu H, Rubia L, Chokshi H, Singhal D, Malick W (2013) Improved human bioavailability of vemurafenib, a practically insoluble drug, using an amorphous polymer-stabilized solid dispersion prepared by a solvent-controlled coprecipitation process. J Pharm Sci 102:967–981CrossRefGoogle Scholar
  90. 90.
    ICH Guideline (2016) Impurity: guideline for residual solvents, Q3C(R6), Step 4, 20 OctoberGoogle Scholar
  91. 91.
    Scott RL (1949) The thermodynamics of high-polymer solutions. IV. Phase equilibria in the ternary system: polymer-liquid 1-liquid 2. J Chem Phys 17:268–279CrossRefGoogle Scholar
  92. 92.
    Tompa H (1956) Polymer solutions. Academic Press, New York, p 325Google Scholar
  93. 93.
    Li J, Patel D, Wang G (2017) Use of spray-dried dispersions in early pharmaceutical development: theoretical and practical challenges. AAPS J 19:321–333CrossRefGoogle Scholar
  94. 94.
    Davis MT, Egan DP, Kuhs M, Albadarin AB, Griffin CS, Collins JA, Walker GM (2016) Amorphous solid dispersions of BCS class II drugs: a rational approach to solvent and polymer selection. Chem Eng Res Des 110:192–199CrossRefGoogle Scholar
  95. 95.
    Zhou D, Qiu Y (2010) Understanding material properties in pharmaceutical product development and manufacturing: powder flow and mechanical properties. J Val Technol 16:65–77Google Scholar
  96. 96.
    Kopp S, Beyer C, Graf E, Kubel F, Doelker E (1989) Methodology for a better evaluation of the relation between mechanical strength of solids and polymorphic form. J Pharm Pharmacol 41:79–82CrossRefGoogle Scholar
  97. 97.
    Hancock BC, Carlson GT, Ladipo DD, Langdon BA, Mullarney MP (2002) Comparison of the mechanical properties of the crystalline and amorphous forms of a drug substance. Int J Pharm 241:73–85CrossRefGoogle Scholar
  98. 98.
    Brungs MP (1995) Fracture and failure of glass. Mater Forum 19:227–239Google Scholar
  99. 99.
    Iyer R, Hegde S, Zhang Y-E, Dinunzio J, Singhal D, Malick A, Amidon G (2013) The impact of hot melt extrusion and spray drying on mechanical properties and tableting indices of materials used in pharmaceutical development. J Pharm Sci 102:3604–3613CrossRefGoogle Scholar
  100. 100.
    Grymonpre W, De Jaeghere W, Peeters E, Adriaensens P, Remon JP, Vervaet C (2016) The impact of hot-melt extrusion on the tableting behaviour of polyvinyl alcohol. Int J Pharm 498:254–262CrossRefGoogle Scholar
  101. 101.
    Surampalli G, Nanjwade BK, Patil PA, Chilla R (2016) Novel tablet formulation of amorphous candesartan cilexetil solid dispersions involving P-gp inhibition for optimal drug delivery: in vitro and in vivo evaluation. Drug Deliv 23:2124–2138CrossRefGoogle Scholar
  102. 102.
    Joshi AB, Patel S, Kaushal AM, Bansal AK (2010) Compaction studies of alternate solid forms of celecoxib. Adv Powder Technol 21:452–460CrossRefGoogle Scholar
  103. 103.
    Agrawal AM, Dudhedia MS, Patel AD, Raikes MS (2013) Characterization and performance assessment of solid dispersions prepared by hot melt extrusion and spray drying process. Int J Pharm 457:71–81CrossRefGoogle Scholar
  104. 104.
    Grymonpré W, Verstraete G, Van Bockstal PJ, Van Renterghem J, Rombouts P, De Beer T, Remon JP, Vervaet C (2017) In-line monitoring of compaction properties on a rotary tablet press during tablet manufacturing of hot-melt extruded amorphous solid dispersions. Int J Pharm 517:348–358CrossRefGoogle Scholar
  105. 105.
    Sarode AL, Sandhu H, Shah N, Malick W, Zia H (2013) Hot melt extrusion (HME) for amorphous solid dispersions: predictive tools for processing and impact of drug-polymer interactions on supersaturation. Eur J Pharm Sci 48:371–384CrossRefGoogle Scholar
  106. 106.
    Lang B, McGinity JW, Williams RO (2014) Hot-melt extrusion – basic principles and pharmaceutical applications. Drug Dev Ind Pharm 40:1133–1155CrossRefGoogle Scholar
  107. 107.
    Vogel H (1921) Das Temperaturabhängigkeitsgesetz der Viskosität von Flüssigkeiten. Phys Z 22:645–646Google Scholar
  108. 108.
    Fulcher GS (1925) Analysis of recent measurements of the viscosity of glasses. J Am Ceram Soc 8:339–355CrossRefGoogle Scholar
  109. 109.
    Tammann VG, Hesse W (1926) Die abhängigkeit der viscosität von der temperatur bei unterkühlten flüssigkeiten. Z Anorg Allg Chem 156:245–257CrossRefGoogle Scholar
  110. 110.
    Gibbs JH, DiMarzio EA (1958) Nature of the glass transition and the glassy state. J Chem Phys 28:373–383CrossRefGoogle Scholar
  111. 111.
    Adam G, Gibbs JH (1965) On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J Chem Phys 43:139–146CrossRefGoogle Scholar
  112. 112.
    Hodge IM (1987) Effects of annealing and prior history on enthalpy relaxation in glassy polymers. 6. Adam-Gibbs formulation of nonlinearity. Macromolecules 20:2897–2908CrossRefGoogle Scholar
  113. 113.
    Hodge IM (1994) Enthalpy relaxation and recovery in amorphous materials. J Non-Cryst Solids 169:211–266CrossRefGoogle Scholar
  114. 114.
    Gordon M, Taylor JS (1952) Ideal copolymers and the second-order transitions of synthetic rubbers 1: non-crystalline copolymers. J Appl Chem 2:493–498CrossRefGoogle Scholar
  115. 115.
    Couchman PR, Karasz FE (1978) A classical thermodynamic discussion of the effect of composition on glass-transition temperatures. Macromolecules 11:117–119CrossRefGoogle Scholar
  116. 116.
    Simha R (1962) On a general relation involving glass temperature and coefficients of expansion of polymers. J Chem Phys 37:1003–1007CrossRefGoogle Scholar
  117. 117.
    Fox T (1956) Influence of diluent and of copolymer composition on the glass temperature of a polymer system. Bull Am Phys Soc 1:123–132Google Scholar
  118. 118.
    Dow Pharma & Food Solutions. AFFINISOL™: HPMC HME for hot melt extrusion. 30 May 2017.
  119. 119.
    McPhillips H, Craig DQM, Royall PG, Hill VL (1999) Characterisation of the glass transition of HPMC using modulated temperature differential scanning calorimetry. Int J Pharm 180:83–90CrossRefGoogle Scholar
  120. 120.
    Baghel S, Cathcart H, O’Reilly NJ (2016) Polymeric amorphous solid dispersions: a review of amorphization, crystallization, stabilization, solid-state characterization, and aqueous solubilization of biopharmaceutical classification system class ii drugs. J Pharm Sci 105:2527–2544CrossRefGoogle Scholar
  121. 121.
    Gao Y, Gesenberg C, Zheng W (2017) Chapter 17. Oral formulations for preclinical studies: principle, design, and development considerations. In: Qiu Y, Chen Y, Zhang GGZ, Yu L, Mantri RV (eds) Developing solid oral dosage forms: pharmaceutical theory & practice, 2nd edn. Elsevier, New York, pp 455–495CrossRefGoogle Scholar
  122. 122.
    Nishi T, Wang TT (1975) Melting-point depression and kinetic effects of cooling on crystallization in poly(vinylidene fluoride) poly(methyl methacrylate) mixtures. Macromolecules 8:905–915Google Scholar
  123. 123.
    Hoei Y, Yamaura K, Matsuzawa S (1992) A lattice treatment of crystalline solvent-amorphous polymer mixtures on melting-point depression. J Phys Chem 96:10584–10586CrossRefGoogle Scholar
  124. 124.
    Marsac PJ, Shamblin SL, Taylor LS (2006) Theoretical and practical approaches for prediction of drug-polymer miscibility and solubility. Pharm Res 23:2417–2426CrossRefGoogle Scholar
  125. 125.
    Tao J, Sun Y, Zhang GGZ, Yu L (2009) Solubility of small-molecule crystals in polymers: D-mannitol in PVP, indomethacin in PVP/VA, and nifedipine in PVP/VA. Pharm Res 26:855–864CrossRefGoogle Scholar
  126. 126.
    Sun Y, Tao J, Zhang GGZ, Yu L (2010) Solubilities of crystalline drugs in polymers: an improved analytical method and comparison of solubilities of indomethacin and nifedipine in PVP, PVP/VA, and PVAc. J Pharm Sci 99:4023–4031CrossRefGoogle Scholar
  127. 127.
    Gao P, Rush BD, Pfund WP, Huang T, Bauer JM, Morozowich W, Kuo M-S, Hageman MJ (2003) Development of a supersaturable SEDDS (S-SEDDS) formulation of paclitaxel with improved oral bioavailability. J Pharm Sci 92:2386–2398CrossRefGoogle Scholar
  128. 128.
    Gao P, Morozowich W (2007) Chapter 13. Design and development of supersaturatable self-emulsifying drug delivery systems for enhancing the gastrointestinal absorption of poorly soluble drugs. In: Hauss DJ (ed) Oral lipid-based formulations: enhancing the bioavailability of poorly water-soluble drugs. CRC, New York, pp 303–327Google Scholar
  129. 129.
    Curatolo W, Nightingale JA, Herbig SM (2009) Utility of Hydroxypropylmethylcellulose Acetate Succinate (HPMCAS) for initiation and maintenance of drug supersaturation in the GI Milieu. Pharm Res 26:1419–1431CrossRefGoogle Scholar
  130. 130.
    Murdande SB, Pikal MJ, Shanker RM, Bogner RH (2010) Solubility advantage of amorphous pharmaceuticals: I. A thermodynamic analysis. J Pharm Sci 99:1254–1264CrossRefGoogle Scholar
  131. 131.
    Thybo P, Hovgaard L, Lindeløv JS, Brask A, Andersen SK (2008) Scaling up the spray drying process from pilot to production scale using an atomized droplet size criterion. Pharm Res 25:1610–1620CrossRefGoogle Scholar
  132. 132.
    Ebey GC (1987) A thermodynamic model for aqueous film-coating. Pharm Tech 11:40, 42–43, 46, 48, 50Google Scholar
  133. 133.
    Strong John C (2009) Psychrometric analysis of the environmental equivalency factor for aqueous tablet coating. AAPS PharmSciTech 10:303–309CrossRefGoogle Scholar
  134. 134.
    Reiland TL, Seitz JA, Yeager JL, Brusenback RA (1983) Aqueous film-coating vaporization efficiency. Drug Dev Ind Pharm 9:945–958CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Institute of PhysicsUniversity of SilesiaChorzówPoland
  2. 2.Chair of Pharmaceutical Technology and Biopharmaceutics, Faculty of PharmacyJagiellonian University - Medical CollegeKrakówPoland
  3. 3.Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch of the Russian Academy of SciencesNovosibirsk State UniversityNovosibirskRussian Federation
  4. 4.AbbVieNorth ChicagoUSA

Personalised recommendations