Advertisement

Amorphous Drug Preparation Methods

Chapter

Abstract

Hot-melt extrusion (HME) as continuous melt manufacturing process is preferable and industrially applicable. Single- or twin-screw extrusion and hot-melt co-extrusion are widely adopted techniques in pharmaceutical technology. Conveying of solids, melting, mixing, devolatilization, pumping and pressurization are main stages of HME. In principle, extrusion equipment usually consists of motor as a drive unit, an extrusion barrels enclosing rotating screw(s), an extrusion die and electronic control unit [1]. For better dispersive mixing specialized mixing elements are also used. The barrel can be independently heated and cooled by control system. The design variables concerns extruder, screw and die. The twin-screw extruder has two agitator assemblies mounted on parallel shafts which can rotate together in the same (co-rotating) or opposite directions and can be fully intermeshing. The diameter of screws which determine the size of equipment, and length of screws to diameter ratio (L/D), usually ranging between 20–40:1, are primarily defined. Modification of screw configuration affects the modification of manufacturing method leading to the process optimization for the planned application. Some examples of extruders modification are depicted schematically in Fig. 4.1. Commercial extruders have modular design that makes possible modification of the process under particular requirements [2].

References

  1. 1.
    Thiry J, Krier F, Evrard B (2015) A review of pharmaceutical extrusion: critical process parameters and scaling-up. Int J Pharm 479(1):227–240.  https://doi.org/10.1016/j.ijpharm.2014.12.036 CrossRefGoogle Scholar
  2. 2.
    Breitenbach J (2002) Melt extrusion: from process to drug delivery technology. Eur J Pharm Biopharm 54:107CrossRefGoogle Scholar
  3. 3.
    Alshahrani SM, Morott JT, Alshetaili AS, Tiwari RV, Majumdar S, Repka MA (2015) Influence of degassing on hot-melt extrusion process. Eur J Pharm Sci 80:43–52.  https://doi.org/10.1016/j.ejps.2015.08.008 CrossRefGoogle Scholar
  4. 4.
    Liu H, Wang P, Zhang X, Shen F, Gogos CG (2010) Effects of extrusion process parameters on the dissolution behavior of indomethacin in Eudragit E PO solid dispersions. Int J Pharm 383(1–2):161–169.  https://doi.org/10.1016/j.ijpharm.2009.09.003 CrossRefGoogle Scholar
  5. 5.
    Vynckier AK, Dierickx L, Saerens L et al (2014) Hot-melt co-extrusion for the production of fixed-dose combination products with a controlled release ethylcellulose matrix core. Int J Pharm 464(1–2):65–74.  https://doi.org/10.1016/j.ijpharm.2014.01.028 CrossRefGoogle Scholar
  6. 6.
    Vynckier AK, De Beer M, Monteyne T et al (2015) Enteric protection of naproxen in a fixed-dose combination product produced by hot-melt co-extrusion. Int J Pharm 491(1–2):243–249.  https://doi.org/10.1016/j.ijpharm.2015.06.010 CrossRefGoogle Scholar
  7. 7.
    Fule R, Dhamecha D, Maniruzzaman M, Khale A, Amin P (2015) Development of hot melt co-formulated antimalarial solid dispersion system in fixed dose form (ARLUMELT): evaluating amorphous state and in vivo performance. Int J Pharm 496(1):137–156.  https://doi.org/10.1016/j.ijpharm.2015.09.069 CrossRefGoogle Scholar
  8. 8.
    Maniruzzaman M, Morgan DJ, Mendham AP, Pang J, Snowden MJ, Douroumis D (2013) Drug-polymer intermolecular interactions in hot-melt extruded solid dispersions. Int J Pharm 443(1–2):199–208.  https://doi.org/10.1016/j.ijpharm.2012.11.048 CrossRefGoogle Scholar
  9. 9.
    Grymonpre W, Verstraete G, Van Bockstal PJ et al (2017) In-line monitoring of compaction properties on a rotary tablet press during tablet manufacturing of hot-melt extruded amorphous solid dispersions. Int J Pharm 517(1-2):348–358.  https://doi.org/10.1016/j.ijpharm.2016.12.033 CrossRefGoogle Scholar
  10. 10.
    Liu J, Cao F, Zhang C, Ping Q (2013) Use of polymer combinations in the preparation of solid dispersions of a thermally unstable drug by hot-melt extrusion. Acta Pharm Sin B 3(4):263–272.  https://doi.org/10.1016/j.apsb.2013.06.007 CrossRefGoogle Scholar
  11. 11.
    Mahmah O, Tabbakh R, Kelly A, Paradkar A (2013) A comparative study of the effect of spray drying and hot-melt extrusion on the properties of amorphous solid dispersions containing felodipine. J Pharm Pharmacol 66(2):275–284.  https://doi.org/10.1111/jphp.12099 CrossRefGoogle Scholar
  12. 12.
    Hülsmann S, Backensfeld T, Keitel S, Bodmeier R (2000) Melt extrusion–an alternative method for enhancing the dissolution rate of 17β-estradiol hemihydrate. Eur J Pharm Biopharm 49(3):237–242CrossRefGoogle Scholar
  13. 13.
    Fu Q, Fang M, Hou Y et al (2016) A physically stabilized amorphous solid dispersion of nisoldipine obtained by hot melt extrusion. Powder Technol 301:342–348.  https://doi.org/10.1016/j.powtec.2016.06.032 CrossRefGoogle Scholar
  14. 14.
    Thiry J, Lebrun P, Vinassa C et al (2016) Continuous production of itraconazole-based solid dispersions by hot melt extrusion: preformulation, optimization and design space determination. Int J Pharm 515(1–2):114–124.  https://doi.org/10.1016/j.ijpharm.2016.10.003 CrossRefGoogle Scholar
  15. 15.
    Park J-B, Lee B-J, Kang C-Y, Tiwari RV, Repka MA (2017) Process analytical quality control of tailored drug release formulation prepared via hot-melt extrusion technology. J Drug Deliv Sci Technol 38:51–58.  https://doi.org/10.1016/j.jddst.2017.01.007 CrossRefGoogle Scholar
  16. 16.
    Verreck G, Decorte A, Li H et al (2006) The effect of pressurized carbon dioxide as a plasticizer and foaming agent on the hot melt extrusion process and extrudate properties of pharmaceutical polymers. J Supercrit Fluids 38(3):383–391.  https://doi.org/10.1016/j.supflu.2005.11.022 CrossRefGoogle Scholar
  17. 17.
    Norman J, Madurawe RD, Moore CMV, Khan MA, Khairuzzaman A (2017) A new chapter in pharmaceutical manufacturing: 3D-printed drug products. Adv Drug Deliv Rev 108:39–50.  https://doi.org/10.1016/j.addr.2016.03.001 CrossRefGoogle Scholar
  18. 18.
    Goyanes A, Chang H, Sedough D et al (2015) Fabrication of controlled-release budesonide tablets via desktop (FDM) 3D printing. Int J Pharm 496(2):414–420.  https://doi.org/10.1016/j.ijpharm.2015.10.039
  19. 19.
    Genina N, Holländer J, Jukarainen H, Mäkilä E, Salonen J, Sandler N (2016) Ethylene vinyl acetate (EVA) as a new drug carrier for 3D printed medical drug delivery devices. Eur J Pharm Sci 90:53–63.  https://doi.org/10.1016/j.ejps.2015.11.005
  20. 20.
    Jonathan G, Karim A (2016) 3D printing in pharmaceutics: a new tool for designing customized drug delivery systems. Int J Pharm Sci 499:376–394.  https://doi.org/10.1016/j.ijpharm.2015.12.071
  21. 21.
    Zhang J, Feng X, Patil H, Tiwari RV, Repka MA (2016) Coupling 3D printing with hot-melt extrusion to produce controlled-release tablets. Int J Pharm 519:186–197.  https://doi.org/10.1016/j.ijpharm.2016.12.049 CrossRefGoogle Scholar
  22. 22.
    Jamróż W, Kurek M, Ewelina Ł et al (2017) 3D printed orodispersible films with aripiprazole. Int J Pharm 533:413–420.  https://doi.org/10.1016/j.ijpharm.2017.05.052
  23. 23.
    Goyanes A, Kobayashi M, Martínez-Pacheco R, Gaisford S, Basit AW (2016) Fused-filament 3D printing of drug products: microstructure analysis and drug release characteristics of PVA-based caplets. Int J Pharm 514:290–295.  https://doi.org/10.1016/j.ijpharm.2016.06.021 CrossRefGoogle Scholar
  24. 24.
    Chai X, Chai H, Wan X et al (2017) Fused deposition modeling (FDM) 3D printed tablets for intragastric floating delivery of domperidone. Sci Rep 7(2829):1–9.  https://doi.org/10.1038/s41598-017-03097-x Google Scholar
  25. 25.
    Kasper JC, Winter G, Friess W (2013) Recent advances and further challenges in lyophilization. Eur J Pharm Biopharm 85(2):162–169.  https://doi.org/10.1016/j.ejpb.2013.05.019 CrossRefGoogle Scholar
  26. 26.
    Franks F (1998) Freeze-drying of bioproducts: putting principles into practice. Eur J Pharm Biopharm 45(3):221–229.  https://doi.org/10.1016/S0939-6411(98)00004-6 CrossRefGoogle Scholar
  27. 27.
    Tang X, Pikal MJ (2004) Design of freeze-drying processes for pharmaceuticals: practical advice. Pharm Res 21(2):191–200.  https://doi.org/10.1023/B:PHAM.0000016234.73023.75 CrossRefGoogle Scholar
  28. 28.
    Craig DQM, Royall PG, Kett VL, Hopton ML (1999) The relevance of the amorphous state to pharmaceutical dosage forms: glassy drugs and freeze dried systems. Int J Pharm 179(2):179–207.  https://doi.org/10.1016/S0378-5173(98)00338-X CrossRefGoogle Scholar
  29. 29.
    Siow CRS, Wan Sia Heng P, Chan LW (2016) Application of freeze-drying in the development of oral drug delivery systems. Expert Opin Drug Deliv 13(11):1595–1608.  https://doi.org/10.1080/17425247.2016.1198767 CrossRefGoogle Scholar
  30. 30.
    Liu J (2006) Physical characterization of pharmaceutical formulations in frozen and freeze-dried solid states: techniques and applications in freeze-drying development. Pharm Dev Technol 11(1):3–28.  https://doi.org/10.1080/10837450500463729 CrossRefGoogle Scholar
  31. 31.
    Sadikoglu H, Ozdemir M, Seker M (2006) Freeze-drying of pharmaceutical products: research and development needs. Dry Technol 24(7):849–861.  https://doi.org/10.1080/07373930600734018 CrossRefGoogle Scholar
  32. 32.
    Teagarden DL, Baker DS (2002) Practical aspects of lyophilization using non-aqueous co-solvent systems. Eur J Pharm Sci 15(2):115–133.  https://doi.org/10.1016/S0928-0987(01)00221-4 CrossRefGoogle Scholar
  33. 33.
    Elgindy N, Elkhodairy K, Molokhia A, Elzoghby A (2010) Lyophilization monophase solution technique for improvement of the physicochemical properties of an anticancer drug, flutamide. Eur J Pharm Biopharm 74(2):397–405.  https://doi.org/10.1016/j.ejpb.2009.11.011 CrossRefGoogle Scholar
  34. 34.
    Pisano R, Fissore D, Barresi AA, Rastelli M (2013) Quality by design: scale-up of freeze-drying cycles in pharmaceutical industry. AAPS PharmSciTech 14(3):1137–1149.  https://doi.org/10.1208/s12249-013-0003-9 CrossRefGoogle Scholar
  35. 35.
    Patel BB, Patel JK, Chakraborty S, Shukla D (2015) Revealing facts behind spray dried solid dispersion technology used for solubility enhancement. Saudi Pharm J 23(4):352–365.  https://doi.org/10.1016/j.jsps.2013.12.013 CrossRefGoogle Scholar
  36. 36.
    Lefebvre AH, McDonell VG (2017) Atomization and sprays, 2nd edn. CRC, Boca Raton, FLCrossRefGoogle Scholar
  37. 37.
    Lee SH, Heng D, Ng WK, Chan HK, Tan RBH (2011) Nano spray drying: a novel method for preparing protein nanoparticles for protein therapy. Int J Pharm 403(1–2):192–200.  https://doi.org/10.1016/j.ijpharm.2010.10.012 CrossRefGoogle Scholar
  38. 38.
    Schmid K, Arpagaus C, Friess W (2011) Evaluation of the nano spray dryer B-90 for pharmaceutical applications. Pharm Dev Technol 16(4):287–294.  https://doi.org/10.3109/10837450.2010.485320 CrossRefGoogle Scholar
  39. 39.
    Singh A, Van den Mooter G (2016) Spray drying formulation of amorphous solid dispersions. Adv Drug Deliv Rev 100:27–50.  https://doi.org/10.1016/j.addr.2015.12.010 CrossRefGoogle Scholar
  40. 40.
    Cal K, Sollohub K (2010) Spray drying technique. I: hardware and process parameters. J Pharm Sci 99(2):575–586.  https://doi.org/10.1002/jps.21886 CrossRefGoogle Scholar
  41. 41.
    Paudel A, Worku ZA, Meeus J, Guns S, Van Den Mooter G (2013) Manufacturing of solid dispersions of poorly water soluble drugs by spray drying: formulation and process considerations. Int J Pharm 453(1):253–284.  https://doi.org/10.1016/j.ijpharm.2012.07.015 CrossRefGoogle Scholar
  42. 42.
    Cortés C, Gil A (2007) Modeling the gas and particle flow inside cyclone separators. Prog Energy Combust Sci 33(5):409–452.  https://doi.org/10.1016/j.pecs.2007.02.001 CrossRefGoogle Scholar
  43. 43.
    Li X, Anton N, Arpagaus C, Belleteix F, Vandamme TF (2010) Nanoparticles by spray drying using innovative new technology: the Büchi Nano Spray Dryer B-90. J Control Release 147(2):304–310.  https://doi.org/10.1016/j.jconrel.2010.07.113 CrossRefGoogle Scholar
  44. 44.
    Sosnik A, Seremeta KP (2015) Advantages and challenges of the spray-drying technology for the production of pure drug particles and drug-loaded polymeric carriers. Adv Colloid Interface Sci 223:40–54.  https://doi.org/10.1016/j.cis.2015.05.003 CrossRefGoogle Scholar
  45. 45.
    Snyder HE (2012) Pharmaceutical spray drying: solid-dose process technology platform for the 21st century. Ther Deliv 3(7):901–912.  https://doi.org/10.4155/tde.12.64 CrossRefGoogle Scholar
  46. 46.
    Ambike AA, Mahadik KR, Paradkar A (2005) Spray-dried amorphous solid dispersions of simvastatin, a low Tg drug: in vitro and in vivo evaluations. Pharm Res 22(6):990–998.  https://doi.org/10.1007/s11095-005-4594-z CrossRefGoogle Scholar
  47. 47.
    Gupta P, Bansal AK (2005) Spray drying for generation of a ternary amorphous system of celecoxib, PVP, and meglumine. Pharm Dev Technol 10(2):273–281.  https://doi.org/10.1081/PDT-54460 CrossRefGoogle Scholar
  48. 48.
    Broadhead J, Edmond Rouan S, Rhodes C (1992) The spray drying of pharmaceuticals. Drug Dev Ind Pharm 18(11–12):1169–1206.  https://doi.org/10.3109/03639049209046327 CrossRefGoogle Scholar
  49. 49.
    Paudel A, Van Den Mooter G (2012) Influence of solvent composition on the miscibility and physical stability of naproxen/PVP K 25 solid dispersions prepared by cosolvent spray-drying. Pharm Res 29(1):251–270.  https://doi.org/10.1007/s11095-011-0539-x CrossRefGoogle Scholar
  50. 50.
    Al-Obaidi H, Brocchini S, Buckton G (2009) Anomalous properties of spray dried solid dispersions. J Pharm Sci 98(12):4724–4737.  https://doi.org/10.1002/jps.21782 CrossRefGoogle Scholar
  51. 51.
    Szafraniec J, Antosik A, Knapik-Kowalczuk J et al (2017) Planetary ball milling and supercritical fluid technology as a way to enhance dissolution of bicalutamide. Int J Pharm. 533:470–479.  https://doi.org/10.1016/j.ijpharm.2017.03.078
  52. 52.
    Lim RTY, Kiong W, Tan RBH (2013) Dissolution enhancement of indomethacin via amorphization using co-milling and supercritical co-precipitation processing. Powder Technol 240:79–87.  https://doi.org/10.1016/j.powtec.2012.07.004 CrossRefGoogle Scholar
  53. 53.
    Gong K, Viboonkiat R, Rehman IU, Buckton G, Darr JA (2005) Formation and characterization of porous indomethacin-PVP coprecipitates prepared using solvent-free supercritical fluid processing. J Pharm Sci 94(12):2583–2590.  https://doi.org/10.1002/jps.20474 CrossRefGoogle Scholar
  54. 54.
    Sethia S, Squillante E (2004) Solid dispersion of carbamazepine in PVP K30 by conventional solvent evaporation and supercritical methods. Int J Pharm 272:1–10.  https://doi.org/10.1016/j.ijpharm.2003.11.025 CrossRefGoogle Scholar
  55. 55.
    Banchero M, Manna L, Ronchetti S, Campanelli P, Ferri A (2009) Supercritical fluids supercritical solvent impregnation of piroxicam on PVP at various polymer molecular weights. J Supercrit Fluids 49:271–278.  https://doi.org/10.1016/j.supflu.2009.01.008 CrossRefGoogle Scholar
  56. 56.
    Won DH, Kim MS, Lee S, Park JS, Hwang SJ (2005) Improved physicochemical characteristics of felodipine solid dispersion particles by supercritical anti-solvent precipitation process. Int J Pharm 301(1-2):199–208.  https://doi.org/10.1016/j.ijpharm.2005.05.017 CrossRefGoogle Scholar
  57. 57.
    Brunner G (2005) Supercritical fluids: technology and application to food processing. J Food Eng 67(1–2):21–33.  https://doi.org/10.1016/j.jfoodeng.2004.05.060 CrossRefGoogle Scholar
  58. 58.
    Deshpande PB, Kumar GA, Kumar AR et al (2011) Supercritical fluid technology: concepts and pharmaceutical applications. PDA J Pharm Sci Technol 65(3):333–344.  https://doi.org/10.5731/pdajpst.2011.00717 CrossRefGoogle Scholar
  59. 59.
    Gurikov P, Smirnova I (2018) Amorphization of drugs by adsorptive precipitation from supercritical solutions: a review. J Supercrit Fluids 132:105–125Google Scholar
  60. 60.
    Goodship V, Ogar E-O (2004) Polymer processing with supercritical fluid. Rapra review reports 15(8). Rapra Technology, Shawbury. ISBN: 9781859574942Google Scholar
  61. 61.
    Girotra P, Singh SK, Nagpal K (2013) Supercritical fluid technology: a promising approach in pharmaceutical research. Pharm Dev Technol 18(1):22–38.  https://doi.org/10.3109/10837450.2012.726998 CrossRefGoogle Scholar
  62. 62.
    Shah N, Sandhu H, Choi DS, Chokshi H, Malick AW (2014) Amorphous solid dispersions theory and practice. Springer, New YorkGoogle Scholar
  63. 63.
    Pathak P, Meziani MJ, Sun Y (2005) Supercritical fluid technology for enhanced drug delivery. Expert Opin Drug Deliv 2(4):747–761.  https://doi.org/10.1517/17425247.2.4.747 CrossRefGoogle Scholar
  64. 64.
    Potter C, Tian Y, Walker G et al (2015) Novel supercritical carbon dioxide impregnation technique for the production of amorphous solid drug dispersions: a comparison to hot melt extrusion. Mol Pharm 12(5):1377–1390.  https://doi.org/10.1021/mp500644h CrossRefGoogle Scholar
  65. 65.
    Alessi P, Cortesi A, Kikic I, Vecchione F (2003) Plasticization of polymers with supercritical carbon dioxide: experimental determination of glass-transition temperatures. J Appl Polym Sci 88(9):2189–2193.  https://doi.org/10.1002/app.11881 CrossRefGoogle Scholar
  66. 66.
    Ugaonkar S, Nunes AC, Needham TE (2007) Effect of n-scCO2 on crystalline to amorphous conversion of carbamazepine. Int J Pharm 333(1–2):152–161.  https://doi.org/10.1016/j.ijpharm.2006.12.010 CrossRefGoogle Scholar
  67. 67.
    Ugaonkar S, Needham TE, Bothun GD (2011) Solubility and partitioning of carbamazepine in a two-phase supercritical carbon dioxide/polyvinylpyrrolidone system. Int J Pharm 403(1–2):96–100.  https://doi.org/10.1016/j.ijpharm.2010.10.031 CrossRefGoogle Scholar
  68. 68.
    Williams GR, Chatterton NP, Nazir T, Yu DG, Zhu LM, Branford-White CJ (2012) Electrospun nanofibers in drug delivery: recent developments and perspectives. Ther Deliv 3:515–533.  https://doi.org/10.4155/tde.12.17
  69. 69.
    Jahangiri A, Adibkia K (2016) Applications of electrospinning/electrospraying in drug delivery. BioImpacts 6(1):1–2.  10.15171/bi.2016.08 CrossRefGoogle Scholar
  70. 70.
    Chakraborty S, Liao I-C, Adler A, Leong KW (2009) Electrohydrodynamics: a facile technique to fabricate drug delivery systems. Adv Drug Deliv Rev 61(12):1043–1054.  https://doi.org/10.1016/j.addr.2009.07.013 CrossRefGoogle Scholar
  71. 71.
    Verreck G, Chun I, Rosenblatt J et al (2003) Incorporation of drugs in an amorphous state into electrospun nanofibers composed of a water-insoluble, nonbiodegradable polymer. J Control Release 92:349–360.  https://doi.org/10.1016/S0168-3659(03)00342-0 CrossRefGoogle Scholar
  72. 72.
    Brewster ME, Verreck G, Chun I et al (2004) The use of polymer-based electrospun nanofibers containing amorphous drug dispersions for the delivery of poorly water-soluble pharmaceuticals. Pharmazie 59(5):387–391Google Scholar
  73. 73.
    Verreck G, Chun I, Peeters J, Rosenblatt J, Brewster ME (2003) Preparation and characterization of nanofibers containing amorphous drug dispersions generated by electrostatic spinning. Pharm Res 20(5):810–817CrossRefGoogle Scholar
  74. 74.
    Zong X, Kim K, Fang D, Ran S, Hsiao BS, Chu B (2002) Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer (Guildf) 43:4403–4412CrossRefGoogle Scholar
  75. 75.
    Nagy ZK, Balogh A, Démuth B et al (2015) High speed electrospinning for scaled-up production of amorphous solid dispersion of itraconazole. Int J Pharm 480(1-2):137–142.  https://doi.org/10.1016/j.ijpharm.2015.01.025 CrossRefGoogle Scholar
  76. 76.
    Zhang S, Kawakami K, Yamamoto M et al (2011) Coaxial electrospray formulations for improving oral absorption of a poorly water-soluble drug. Mol Pharm 8:807–813CrossRefGoogle Scholar
  77. 77.
    Kawakami K, Zhang S, Singh R et al (2013) Preparation of fenofibrate solid dispersion using electrospray deposition and improvement in oral absorption by instantaneous post-heating of the formulation. Int J Pharm 450(1–2):123–128.  https://doi.org/10.1016/j.ijpharm.2013.04.006 CrossRefGoogle Scholar
  78. 78.
    Bhushani JA, Anandharamakrishnan C (2014) Electrospinning and electrospraying techniques: potential food based applications. Trends Food Sci Technol 38(1):23–33.  https://doi.org/10.1016/j.tifs.2014.03.004 Google Scholar
  79. 79.
    Karki S, Kim H, Na S, Shin D, Jo K, Lee J (2016) Thin films as an emerging platform for drug delivery. Asian J Pharm Sci 11:559–574.  https://doi.org/10.1016/j.ajps.2016.05.004 CrossRefGoogle Scholar
  80. 80.
    Parikh T, Gupta SS, Meena AK, Vitez I, Mahajan N, Serajuddin ATM (2015) Application of film-casting technique to investigate drug-polymer miscibility in solid dispersion and hot-melt extrudate. J Pharm Sci 104:2142–2152.  https://doi.org/10.1002/jps.24446 CrossRefGoogle Scholar
  81. 81.
    Amin PM, Gangurde AB, Alai PV (2015) Oral film technology: challenges and future scope for pharmaceutical industry. Int J Pharm Pharm Res 3(3):184–203Google Scholar
  82. 82.
    Weuts I, Van Dycke F, Voorspoels J et al (2011) Physicochemical properties of the amorphous drug, cast films, and spray dried powders to predict formulation probability of success for solid dispersions: etravirine. J Pharm Sci 100(1):260–274.  https://doi.org/10.1002/jps.22242
  83. 83.
    Janssens S, De Zeure A, Paudel A, Van Humbeeck J, Rombaut P, Van Den Mooter G (2010) Influence of preparation methods on solid state supersaturation of amorphous solid dispersions: a case study with itraconazole and Eudragit E100. Pharm Res 27(5):775–785.  https://doi.org/10.1007/s11095-010-0069-y CrossRefGoogle Scholar
  84. 84.
    Chatap VK, Wagh PN, Bari SB et al (2014) Novel spin coating technique for development of zolmitriptan mouth dissolving film. Int J Adv Chem Engg Biol Sci 1(1):110–113Google Scholar
  85. 85.
    Ng YC, Yang Z, McAuley WJ, Qi S (2013) Stabilisation of amorphous drugs under high humidity using pharmaceutical thin films. Eur J Pharm Biopharm 84(3):555–565.  https://doi.org/10.1016/j.ejpb.2013.01.008 CrossRefGoogle Scholar
  86. 86.
    Garner WE (ed) (1955) Chemistry of the solid state. Academic Press, New YorkGoogle Scholar
  87. 87.
    Young DA (1966) Decomposition of solids; v.1: International encyclopedia of physical chemistry and chemical physics; Topic 21, Solid and surface kinetics. Pergamon, OxfordGoogle Scholar
  88. 88.
    Makatun VN (1985) Chemistry of inorganic hydrates. Nauka & Tehnika, MinskGoogle Scholar
  89. 89.
    Dollimore D (1987) The thermal decomposition of oxalates. A review. Thermochim Acta 117:331–363.  https://doi.org/10.1016/0040-6031(87)88127-3 CrossRefGoogle Scholar
  90. 90.
    Galwey AK, Brown ME (1999) Thermal decomposition of ionic solids: chemical properties and reactivities of ionic crystalline phases, vol 86. Elsevier, AmsterdamGoogle Scholar
  91. 91.
    Galwey AK (2000) Structure and order in thermal dehydrations of crystalline solids. Thermochim Acta 355(1–2):181–238.  https://doi.org/10.1016/S0040-6031(00)00448-2 CrossRefGoogle Scholar
  92. 92.
    Petit S, Coquerel G (1996) Mechanism of several solid-solid transformations between dihydrated and anhydrous copper(II) 8-hydroxyquinolinates. Proposition for a unified model for the dehydration of molecular crystals. Chem Mater 8(9):2247–2258.  https://doi.org/10.1021/cm9600438 CrossRefGoogle Scholar
  93. 93.
    Petit S, Coquerel G (2009) Contribution to the understanding of desolvation mechanisms: impact of crystal size, structural purity and process. JEEP 16.  https://doi.org/10.1051/jeep/200900016
  94. 94.
    Willart JF, Descamps M (2008) Solid state amorphization of pharmaceuticals. Mol Pharm 5(6):905–920.  https://doi.org/10.1021/mp800092t CrossRefGoogle Scholar
  95. 95.
    Li Y, Han J, Zhang GG, Grant DJ, Suryanarayanan R (2000) In situ dehydration of carbamazepine dihydrate: a novel technique to prepare amorphous anhydrous carbamazepine. Pharm Dev Technol 5(2):257–266.  https://doi.org/10.1081/PDT-100100540 CrossRefGoogle Scholar
  96. 96.
    Morris KR, Griesser UJ, Eckhardt CJ, Stowell JG (2001) Theoretical approaches to physical transformations of active pharmaceutical ingredients during manufacturing processes. Adv Drug Deliv Rev 48(1):91–114.  https://doi.org/10.1016/S0169-409X(01)00100-4 CrossRefGoogle Scholar
  97. 97.
    Pyne A, Chatterjee K, Suryanarayanan R (2003) Crystalline to amorphous transition of disodium hydrogen phosphate during primary drying. Pharm Res 20(5):802–803.  https://doi.org/10.1023/A:1023445905372 CrossRefGoogle Scholar
  98. 98.
    Kachrimanis K, Griesser UJ (2012) Dehydration kinetics and crystal water dynamics of carbamazepine dihydrate. Pharm Res 29(4):1143–1157.  https://doi.org/10.1007/s11095-012-0698-4 CrossRefGoogle Scholar
  99. 99.
    Petit S, Coquerel G (2006) The amorphous state. In: Hilfiker R (ed) Polymorphism in the pharmaceutical industry. Wiley-VCH, Weinheim, pp 259–285CrossRefGoogle Scholar
  100. 100.
    Tsirenova S, Suponitsky, YuL Karapetyanz Mk (1974) A comparative study of thermal properties of oxygen-containing compounds of Sc and Y. Zh Fiz Khim 48(11):2705–2707Google Scholar
  101. 101.
    Angell CA, Tucker JC (1974) Heat capacities and fusion entropies of the tetrahydrates of calcium nitrate, cadmium nitrate, and magnesium acetate. Concordance of calorimetric and relaxational ideal glass transition temperatures. J Phys Chem 78(3):278–281.  http://pubs.acs.org/doi/abs/10.1021/j100596a018?journalCode=jpchax
  102. 102.
    Guion J, Sauzade JD, Laügt M (1983) Critical examination and experimental determination of melting enthalpies and entropies of salt hydrates. Thermochim Acta 67(2–3):167–179.  https://doi.org/10.1016/0040-6031(83)80096-3 CrossRefGoogle Scholar
  103. 103.
    Rani M, Govindarajan R, Surana R, Suryanarayanan R (2006) Structure in dehydrated trehalose dihydrate – evaluation of the concept of partial crystallinity. Pharm Res 23(10):2356–2367.  https://doi.org/10.1007/s11095-006-9058-6 CrossRefGoogle Scholar
  104. 104.
    Niepce JC, Watelle G, Brett NH (1977) Product crystallite size–reaction rate relationship in M(OH)2–MO decomposition. Structural transformation mechanism. J Chem Soc, Faraday Trans 1 Phys Chem Condens Phases 74:1530–1537. http://pubs.rsc.org | doi: https://doi.org/10.1039/F19787401530
  105. 105.
    Mutin JC, Dusausoy Y (1981) Recherche d’une description structurale des decompositions endothermiques solide 1→ solide 2+ gaz. II. Caractéristiques structurales de la reaction 2 [H2C2O4, BaC2O4, 2H2O] → Ba(HC2O4)2, BaC2O4, 2H2O+ H2C2O4+ 2H2O. J Solid State Chem 38(3):394–405.  https://doi.org/10.1016/0022-4596(81)90070-0
  106. 106.
    Mutin JC, Watelle G, Dusausoy Y (1979) Study of a lacunary solid phase I—thermodynamic and crystallographic characteristics of its formation. J Solid State Chem 27:407–421.  https://doi.org/10.1016/0022-4596(79)90183-X CrossRefGoogle Scholar
  107. 107.
    Schoonover JR, Lin SH, Eyring L (1987) Time-resolved the thermal X-ray diffraction by synchrotron radiation: decomposition of Cd(OH)2 powders. J Solid State Chem 218:214–218Google Scholar
  108. 108.
    Matvienko AA, Chizhik SA, Sidelnikov AA (2005) Factors controlling the morphology of the surface of BaC2O4 • H2C2O4 • 2H2O during its dehydration. Russ J Phys Chem A 79(9):1478–1482Google Scholar
  109. 109.
    Chizhik SA, Sidelnikov AA (2007) The kinetics of solid state reactions accompanied by fracture: I. Reaction of ion exchange in lime-soda glass. Solid State Ionics 178(23–24):1344–1352.  https://doi.org/10.1016/j.ssi.2007.07.011 CrossRefGoogle Scholar
  110. 110.
    Chizhik SA, Sidelnikov AA (2007) The kinetics of solid state reactions accompanied by fracture: II. Model of stationary front with disordered fracture morphology. Solid State Ionics 178(27–28):1487–1492.  https://doi.org/10.1016/j.ssi.2007.09.010 CrossRefGoogle Scholar
  111. 111.
    Chizhik SA, Sidelnikov AA (2008) The kinetics of solid state reactions accompanied by fracture: III. Model of stationary front with spatially ordered fracture morphology. Solid State Ionics 179(33–34):1823–1834.  https://doi.org/10.1016/j.ssi.2008.05.002 CrossRefGoogle Scholar
  112. 112.
    Larsen AS, Rantanen J, Johansson KE (2017) Computational dehydration of crystalline hydrates using molecular dynamics simulations. J Pharm Sci 106(1):348–355.  https://doi.org/10.1016/j.xphs.2016.10.005 CrossRefGoogle Scholar
  113. 113.
    Han J, Suryanarayanan R (1998) Influence of environmental conditions on the kinetics and mechanism of dehydration of carbamazepine dihydrate. Pharm Dev Technol 3(4):587–596.  https://doi.org/10.3109/10837459809028643 CrossRefGoogle Scholar
  114. 114.
    Griesser UJ, Burger A (1995) The effect of water vapor pressure on desolvation kinetics of caffeine 4/5-hydrate. Int J Pharm 120(1):83–93.  https://doi.org/10.1016/0378-5173(94)00416-3 CrossRefGoogle Scholar
  115. 115.
    Lallemant M, Watelle-Marion G (1967) Dégradation thermique du sulfate de magnésium heptahydraté sous pression de vapeur d’eau contrôlée. Mécanisme observé au-dessus de 50 torr. C R Acad Sci Paris C 264:2030–2033Google Scholar
  116. 116.
    Bertrand G, Lallemant M, Watelle-Marion G (1974) Variation anormale de la vitesse de decomposition d’un solide—I: Cas des deshydratations d’hydrates salins. J Inorg Nucl Chem 36:1303–1309.  https://doi.org/10.1016/0022-1902(74)80068-0 CrossRefGoogle Scholar
  117. 117.
    Bertrand G, Lallemant M, Mokhlisse A, Watelle-Marion G (1978) Abnormal variation of the rate of decomposition of a solid—II: A property common to interfacial endothermic reactions. J Inorg Nucl Chem 40(5):819–824.  https://doi.org/10.1016/0022-1902(78)80158-4 CrossRefGoogle Scholar
  118. 118.
    Lallemant M, Watelle-Marion G (1968) Anomalies presentees par la dissociation thermique, sous faible pression de vapeur d’eau, du sulfate du cuivre pentahydrate. C R Acad Sci Paris C 267(26):1775–1778Google Scholar
  119. 119.
    Chupakhin AP, Lyakhov NZ (1979) Dependence of the rate of water evaporation on the pressure of its vapor. Thermochim Acta 29:192–195.  https://doi.org/10.1016/0040-6031(79)85033-9 CrossRefGoogle Scholar
  120. 120.
    Ferrier A (1966) Influence de l’état de division de la goethite et de l’oxyde ferrique sur leurs chaleurs de réaction. Revue de Chimie minérale 3:587–615Google Scholar
  121. 121.
    Yatsimirskii VK (1970) Minimal size of crystalline particles. Theor Exp Chem 6(5):587–615Google Scholar
  122. 122.
    Kimoto K, Nishida I (1973) Crystal structures of very small particles of chromium and iron. Thin Solid Films 17(1):49–58.  https://doi.org/10.1016/0040-6090(74)90238-7 CrossRefGoogle Scholar
  123. 123.
    Taylor LS, York P (1998) Characterization of the phase transitions of trehalose dihydrate on heating and subsequent dehydration. J Pharm Sci 87(3):347–355.  https://doi.org/10.1021/js970239m CrossRefGoogle Scholar
  124. 124.
    Bregeault J-M, Pannetier G (1969) Etude de la dissociation thermique des sulfates et des sulfates basiques. Sur les polymorphisme du sulfate de zinc. Bull Soc Chim Fr 4:1061–1065Google Scholar
  125. 125.
    Walter LL, Quemneur E (1968) Sur la thermolyse des sulfates ferrique. Bull Soc Chim Fr 4:1061–1065Google Scholar
  126. 126.
    Bernstein J (2002) Polymorphism in molecular crystals. Clarendon Press/International Union of Crystallography Monographs on Crystallography, OxfordGoogle Scholar
  127. 127.
    Llinàs A, Burley JC, Prior TJ, Glen RC, Goodman JM (2008) Concomitant hydrate polymorphism in the precipitation of sparfloxacin from aqueous solution. Cryst Growth Des 8(1):114–118.  https://doi.org/10.1021/cg700908m CrossRefGoogle Scholar
  128. 128.
    Minkov VS, Beloborodova AA, Drebushchak VA, Boldyreva EV (2014) Furosemide solvates: can they serve as precursors to different polymorphs of furosemide? Cryst Growth Des 14(2):513–522.  https://doi.org/10.1021/cg401257w CrossRefGoogle Scholar
  129. 129.
    Beloborodova AA, Minkov VS, Rychkov DA, Rybalova TV, Boldyreva EV (2017) First evidence of polymorphism in furosemide solvates. Cryst Growth Des 17(5):2333–2341.  https://doi.org/10.1021/acs.cgd.6b01191 CrossRefGoogle Scholar
  130. 130.
    Otsuka M, Kaneniwa N (1990) Effect of grinding on the crystallinity and chemical stability in the solid state of cephalothin sodium. Int J Pharm 62(1):65–73.  https://doi.org/10.1016/0378-5173(90)90031-X CrossRefGoogle Scholar
  131. 131.
    Ward GH, Schultz RK (1995) Process-induced crystallinity changes in albuterol sulfate and its effect on powder physical stability. Pharm Res 12(5):773–779. https://link.springer.com/article/10.1023/A:1016232230638
  132. 132.
    Shakhtshneider T, Boldyrev V (1999) Mechanochemical synthesis and mechanical activation of drugs. In: Boldyreva E, Boldyrev V (eds) Reactivity of solids. Chichester, Wiley, pp 271–311Google Scholar
  133. 133.
    Descamps M, Willart JF, Dudognon E, Caron V (2007) Transformation of pharmaceutical compounds upon milling and comilling: the role of Tg. J Pharm Sci 96(5):1398–1407.  https://doi.org/10.1002/jps.20939 CrossRefGoogle Scholar
  134. 134.
    Descamps M (2016) Disordered pharmaceutical materials. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  135. 135.
    Boldyreva E (2016) Non-ambient conditions in the investigation and manufacturing of drug forms. Curr Pharm Des 22(32):4981–5000. http://www.ingentaconnect.com/contentone/ben/cpd/2016/00000022/00000032/art00009 CrossRefGoogle Scholar
  136. 136.
    Gubskaya AV, Lisnyak YV (1995) Effect of cryogrinding on physico-chemical properties of drugs. I. Theophylline: evaluation of particles sizes and the degree of crystallinity, relation to dissolution parameters. Drug Dev Ind Pharm 21(17):1953–1964.  https://doi.org/10.3109/03639049509065880. CrossRefGoogle Scholar
  137. 137.
    Hancock BC, Zografi G (1997) Characteristics and significance of the amorphous state in pharmaceutical systems. J Pharm Sci 86(1):1–12.  https://doi.org/10.1021/js9601896 CrossRefGoogle Scholar
  138. 138.
    Mosharraf M, Sebhatu T, Nyström C (1999) The effects of disordered structure on the solubility and dissolution rates of some hydrophilic, sparingly soluble drugs. Int J Pharm 177(1):29–51.  https://doi.org/10.1016/S0378-5173(98)00317-2 CrossRefGoogle Scholar
  139. 139.
    Hancock BC, Parks M (2000) What is the true solubility advantage for amorphous pharmaceuticals? Pharm Res 17(4):397–404. https://www.ncbi.nlm.nih.gov/labs/articles/10870982/ CrossRefGoogle Scholar
  140. 140.
    Mosharraf M, Nyström C (2003) Apparent solubility of drugs in partially crystalline systems. Drug Dev Ind Pharm 29(6):603–622.  https://doi.org/10.1081/DDC-120021310 CrossRefGoogle Scholar
  141. 141.
    Yu L (2001) Amorphous pharmaceutical solids: preparation, characterization and stabilization. Adv Drug Deliv Rev 48(1):27–42.  https://doi.org/10.1016/S0169-409X(01)00098-9 CrossRefGoogle Scholar
  142. 142.
    Brough C, Williams RO (2013) Amorphous solid dispersions and nano-crystal technologies for poorly water-soluble drug delivery. Int J Pharm 453(1):157–166.  https://doi.org/10.1016/j.ijpharm.2013.05.061 CrossRefGoogle Scholar
  143. 143.
    Allesø M, Chieng N, Rehder S, Rantanen J, Rades T, Aaltonen J (2009) Enhanced dissolution rate and synchronized release of drugs in binary systems through formulation: amorphous naproxen-cimetidine mixtures prepared by mechanical activation. J Control Release 136(1):45–53.  https://doi.org/10.1016/j.jconrel.2009.01.027 CrossRefGoogle Scholar
  144. 144.
    Sharafutdinova D, Efremov YY, Rizvanov IH, Konygin GN, Rybin DS, Strelkov NS (2010) Composition and structure of calcium gluconate and its mechanoactivated (nanodispersed) form. J Struct Chem 51:S142–S144. doi:https://link.springer.com/article/10.1007%2Fs10947-010-0203-z?LI=true
  145. 145.
    Boldyreva E (2013) Mechanochemistry of inorganic and organic systems: what is similar, what is different? Chem Soc Rev 42:7719–7738.  https://doi.org/10.1039/c3cs60052a CrossRefGoogle Scholar
  146. 146.
    Losev EA, Boldyreva EV (2014) The role of a liquid in “dry” co-grinding: a case study of the effect of water on mechanochemical synthesis in a “l-serine–oxalic acid” system. CrystEngComm 16(19):3857.  https://doi.org/10.1039/c3ce42321b CrossRefGoogle Scholar
  147. 147.
    Karki S, Friščić T, Jones W, Motherwell WDS (2007) Screening for pharmaceutical cocrystal hydrates via neat and liquid-assisted grinding. Mol Pharm 4(3):347–354.  https://doi.org/10.1021/mp0700054 CrossRefGoogle Scholar
  148. 148.
    Belenguer AM, Lampronti GI, Cruz-Cabeza AJ, Hunter CA, Sanders JKM (2016) Solvation and surface effects on polymorph stabilities at the nanoscale. Chem Sci 72:171–179.  https://doi.org/10.1039/C6SC03457H Google Scholar
  149. 149.
    Bahl D, Bogner RH (2006) Amorphization of indomethacin by co-grinding with Neusilin US2: Amorphization kinetics, physical stability and mechanism. Pharm Res 23(10):2317–2325.  https://doi.org/10.1007/s11095-006-9062-x CrossRefGoogle Scholar
  150. 150.
    Linol J, Morelli T, Petit M-N, Coquerel G (2007) Inversion of the relative stability between two polymorphic forms of (±) modafinil under dry high-energy milling: comparisons with results obtained under wet high-energy milling. Cryst Growth Des 7(9):1608–1611.  https://doi.org/10.1021/cg0700723 CrossRefGoogle Scholar
  151. 151.
    Tumanov IA, Michalchuk AAL, Politov AA, Boldyreva EV, Boldyrev VV (2017) Inadvertent liquid assisted grinding: a key to “dry” organic mechano-co-crystallisation? CrystEngComm 19:2830–2835.  https://doi.org/10.1039/C7CE00517B CrossRefGoogle Scholar
  152. 152.
    Gupta MK, Vanwert A, Bogner RH (2003) Formation of physically stable amorphous drugs by milling with neusilin. J Pharm Sci 92(3):536–551.  https://doi.org/10.1002/jps.10308 CrossRefGoogle Scholar
  153. 153.
    Politov A, Golyazimova O (2014) Increasing the energy yield of mechanochemical transformations: selected case studies. Faraday Discuss 170:345–356.  https://doi.org/10.1039/c3fd00143a CrossRefGoogle Scholar
  154. 154.
    Orowan E (1949) Fracture and strength of solids. Reports Prog Phys 12(1):185.  https://doi.org/10.1088/0034-4885/12/1/309 CrossRefGoogle Scholar
  155. 155.
    De Gusseme A, Neves C, Willart JF, Rameau A, Descamps M (2008) Ordering and disordering of molecular solids upon mechanical milling: the case of fananserine. J Pharm Sci 97(11):5000–5012.  https://doi.org/10.1002/jps.21472 CrossRefGoogle Scholar
  156. 156.
    Lepek P, Sawicki W, Wlodarski K, Wojnarowska Z, Paluch M, Guzik L (2013) Effect of amorphization method on telmisartan solubility and the tableting process. Eur J Pharm Biopharm 83(1):114–121.  https://doi.org/10.1016/j.ejpb.2012.09.019 CrossRefGoogle Scholar
  157. 157.
    Willart JF, De Gusseme A, Odou G, Danede F, Descamps M (2001) Direct crystal to glass transformations of trehalose induced by milling, dehydration and annealing. Solid State Commun 119:501–505.  https://doi.org/10.1016/S0038-1098(01)00283-6 CrossRefGoogle Scholar
  158. 158.
    Willart JF, Caron V, Lefort R, Danède F, Prévost D, Descamps M (2004) Athermal character of the solid state amorphization of lactose induced by ball milling. Solid State Commun 132(10):693–696.  https://doi.org/10.1016/j.ssc.2004.09.007 CrossRefGoogle Scholar
  159. 159.
    Dujardin N, Willart JF, Dudognon E et al (2008) Solid state vitrification of crystalline α and β-D-glucose by mechanical milling. Solid State Commun 148(1–2):78–82.  https://doi.org/10.1016/j.ssc.2008.07.002 CrossRefGoogle Scholar
  160. 160.
    Descamps M, Aumelas A, Desprez S, Willart JF (2015) The amorphous state of pharmaceuticals obtained or transformed by milling: sub-Tg features and rejuvenation. J Non Cryst Solids 407:72–80.  https://doi.org/10.1016/j.jnoncrysol.2014.08.055 CrossRefGoogle Scholar
  161. 161.
    Otsuka MM, Kaneniwa N (1983) Effect of grinding on the degree of crystallinity of cephalexin powder. Chem Pharm Bull (Tokyo) 31(12):4489–4495.  https://doi.org/10.1248/cpb.31.4489 CrossRefGoogle Scholar
  162. 162.
    Shakhtshneider TP (1997) Phase transformations and stabilization of metastable states of molecular crystals under mechanical activation. Solid State Ionics 101–103:851–856. doi: https://doi.org/10.1016/S0167-2738(97)00224-5
  163. 163.
    Kaneniwa N, Otsuka M (1985) Effect of grinding on the transformations of polymorphs of chloramphenicol palmitate. Chem Pharm Bull 33(4):1660–1668.  https://doi.org/10.1248/cpb.33.1660 CrossRefGoogle Scholar
  164. 164.
    Desprez S, Descamps M (2006) Transformations of glassy indomethacin induced by ball-milling. J Non Cryst Solids 352(42–49 Spl Iss):4480–4485. doi: https://doi.org/10.1016/j.jnoncrysol.2006.02.130
  165. 165.
    Vasikhovskaia VA (2016) Physical and chemical properties of starch after brittle comminution. Thesis, Novosibirsk State University. http://www.nsu.ru/xmlui/handle/nsu/10966
  166. 166.
    Esersky V, Savitskaya A (1992) Mechanical activation of sulfanilamides on communication. Zhurn Fiz Khim 66:3109–3114Google Scholar
  167. 167.
    Boldyrev VV (1972) Kinetic factors in mechanochemical processes in inorganic systems. Kinet Catal 13(6):1411–1421Google Scholar
  168. 168.
    Boldyrev VV (2006) Mechanochemistry and mechanical activation of solids. Russ Chem Rev 75(3):177–199. http://iopscience.iop.org/article/10.1070/RC2006v075n03ABEH001205/meta
  169. 169.
    Michalchuk AAL, Tumanov IA, Drebushchak VA, Boldyreva EV (2014) Advances in elucidating mechanochemical complexities via implementation of a simple organic system. Faraday Discuss 170:311–335.  https://doi.org/10.1039/C3FD00150D CrossRefGoogle Scholar
  170. 170.
    Yoshioka M, Hancock BC, Zografi G (1994) Crystallization of indomethacin from the amorphous state below and above its glass transition temperature. J Pharm Sci 83(12):1700–1705.  https://doi.org/10.1002/jps.2600831211 CrossRefGoogle Scholar
  171. 171.
    Schammé B, Couvrat N, Malpeli P et al (2016) Transformation of an active pharmaceutical ingredient upon high-energy milling: a process-induced disorder in biclotymol. Int J Pharm 499(1–2):67–73.  https://doi.org/10.1016/j.ijpharm.2015.12.032 CrossRefGoogle Scholar
  172. 172.
    Feng T, Pinal R, Carvajal MT (2008) Process induced disorder in crystalline materials: differentiating defective crystals from the amorphous form of griseofulvin. J Pharm Sci 97(8):3207–3221.  https://doi.org/10.1002/jps.21219 CrossRefGoogle Scholar
  173. 173.
    Patterson JE, James MB, Forster AH, Lancaster RW, Butler JM, Rades T (2005) The influence of thermal and mechanical preparative techniques on the amorphous state of four poorly soluble compounds. J Pharm Sci 94(9):1998–2012.  https://doi.org/10.1002/jps.20424 CrossRefGoogle Scholar
  174. 174.
    Graeser KA, Strachan CJ, Gordon K, Patterson JE, Gordon KC, Rades T (2008) Physicochemical properties and stability of two differently prepared amorphous forms of simvastatin. Cryst Growth Des 8(1):128–135.  https://doi.org/10.1021/cg700913m CrossRefGoogle Scholar
  175. 175.
    Grisedale LC, Jamieson MJ, Belton PS, Barker SA, Craig M, Duncan Q (2011) Characterization and quantification of amorphous material in milled and spray-dried salbutamol sulfate: a comparison of thermal, spectroscopic, and water vapor sorption approaches. J Pharm Sci 100(8):3114–3129.  https://doi.org/10.1002/jps.22484 CrossRefGoogle Scholar
  176. 176.
    Wlodarski K, Sawicki W, Paluch KJ et al (2014) The influence of amorphization methods on the apparent solubility and dissolution rate of tadalafil. Eur J Pharm Sci 62:132–140.  https://doi.org/10.1016/j.ejps.2014.05.026 CrossRefGoogle Scholar
  177. 177.
    Hancock BC, Shalaev E, Shamblin SL (2002) Polyamorphism: a pharmaceutical science perspective. J Pharm Pharmacol 54(8):1151–1152.  https://doi.org/10.1211/002235702320266343 CrossRefGoogle Scholar
  178. 178.
    Turnbull D (1976) Relation of crystallization behavior to structure in amorphous systems. Ann NY Acad Sci 279:185.  https://doi.org/10.1111/j.1749-6632.1976.tb39706.x
  179. 179.
    Andronis V, Zografi G (2000) Crystal nucleation and growth of indomethacin polymorphs from the amorphous state. J Non Cryst Solids 271(3):236–248.  https://doi.org/10.1016/S0022-3093(00)00107-1 CrossRefGoogle Scholar
  180. 180.
    Politov AA, Kostrovskii VG, Boldyrev VV (2001) Conditions of preparation and crystallization of amorphous paracetamol. Russ J Phys Chem A 75(11):1903–1911. http://cat.inist.fr/?aModele=afficheN&cpsidt=13620211
  181. 181.
    Gaffet E, Abdellaoui M, Malhouroux-Gaffet N (1995) Formation of nanostructural materials induced by mechanical processings (overview). Mater Trans 36(2):198–209.  https://doi.org/10.2320/matertrans1989.36.198 CrossRefGoogle Scholar
  182. 182.
    Caron V, Willart JF, Lefort R, Derollez P, Dande F, Descamps M (2011) Solid state amorphization kinetic of alpha lactose upon mechanical milling. Carbohydr Res 346(16):2622–2628.  https://doi.org/10.1016/j.carres.2011.09.004 CrossRefGoogle Scholar
  183. 183.
    Shalaev E, Wu K, Shamblin S, Krzyzaniak JF, Descamps M (2016) Crystalline mesophases: structure, mobility, and pharmaceutical properties. Adv Drug Deliv Rev 100:194–211.  https://doi.org/10.1016/j.addr.2016.04.002 CrossRefGoogle Scholar
  184. 184.
    Surovtsev NV, Adichtchev SV, Malinovsky VK et al (2012) Glycine phases formed from frozen aqueous solutions: revisited. J Chem Phys 137(6).  https://doi.org/10.1063/1.4739532
  185. 185.
    Ogienko AG, Bogdanova EG, Trofimov NA et al (2017) Large porous particles for respiratory drug delivery. Glycine-based formulations. Eur J Pharm Sci.  https://doi.org/10.1016/j.ejps.2017.05.007
  186. 186.
    Boldyrev VV, Shakhtshneider TP, Burleva LP, Severtsev VA (1994) Preparation of the disperse systems of sulfathiazole-polyvinylpirrolidone by mechanical activation. Drug Dev Ind Pharm 20(6):1103–1114.  https://doi.org/10.3109/03639049409038355. CrossRefGoogle Scholar
  187. 187.
    Shakhtshneider TP, Vasiltchenko MA, Politov AA, Boldyrev VV (1996) The mechanochemical preparation of solid disperse systems of ibuprofen-polyethylene glycol. Int J Pharm 130(1):25–32.  https://doi.org/10.1016/0378-5173(95)04244-X CrossRefGoogle Scholar
  188. 188.
    Shakhtshneider TP, Vasilchenko MA, Politov AA (1997) Mechanochemical preparation of drug carrier solid dispersions. J Therm Anal 48:491–501.  https://doi.org/10.1007/BF01979496 CrossRefGoogle Scholar
  189. 189.
    Ivashchenko GL, Shakhtshneider TP, Boldyrev VV, Bazarnova NG, Medvedeva AS, Safronova LP (2003) Effect of mechanical activation on the physicochemical properties of piroxicam with chitosan. Mendeleev Commun 13(1):3–5.  https://doi.org/10.1070/MC2003v013n01ABEH001644. CrossRefGoogle Scholar
  190. 190.
    Drebushchak VA, Shakhtshneider TP, Apenina SA, Medvedeva AS, Safronova LP, Boldyrev VV (2006) Thermoanalytical investigation of drug-excipient interaction: Part II. Activated mixtures of piroxicam with cellulose and chitosan. J Therm Anal Calorim 86(2):303–309.  https://doi.org/10.1007/s10973-005-7440-y CrossRefGoogle Scholar
  191. 191.
    Shakhtshneider TP, Danède F, Capet F et al (2007) Grinding of drugs with pharmaceutical excipients at cryogenic temperatures. Part I. Cryogenic grinding of piroxicam-polyvinylpyrrolidone mixtures. J Therm Anal Calorim 89:699–707.  https://doi.org/10.1007/s10973-006-7958-7 CrossRefGoogle Scholar
  192. 192.
    Shakhtshneider TP, Danède F, Capet F et al (2007) Grinding of drugs with pharmaceutical excipients at cryogenic temperatures. Part II. Cryogenic grinding of indomethacin-polyvinylpyrrolidone mixtures. J Therm Anal Calorim 89:709–715.  https://doi.org/10.1007/s10973-006-7959-6 CrossRefGoogle Scholar
  193. 193.
    Dushkin A V, Meteleva ES, Tolstikova TG et al (2008) Mechanochemical preparation and pharmacological activities of water-soluble intermolecular complexes of arabinogalactan with medicinal agents. Russ Chem Bull 57(6):1299–1307. https://link.springer.com/article/10.1007%2Fs11172-008-0167-8?LI=true
  194. 194.
    Caron V, Tajber L, Corrigan OI, Healy AM (2011) A comparison of spray drying and milling in the production of amorphous dispersions of sulfathiazole/polyvinylpyrrolidone and sulfadimidine/polyvinylpyrrolidone. Mol Pharm 8(2):532–542.  https://doi.org/10.1021/mp1003674 CrossRefGoogle Scholar
  195. 195.
    Shakhtshneider TP, Kuznetsova SA, Mikhailenko MA et al (2013) Effect of mechanochemical treatment on physicochemical and antitumor properties of betulin diacetate mixtures with arabinogalactan. Chem Nat Compd 49(3):470–474.  https://doi.org/10.1007/s10600-013-0641-x CrossRefGoogle Scholar
  196. 196.
    Miyazaki T, Yoshioka S, Aso Y, Kojima S (2004) Ability of polyvinylpyrrolidone and polyacrylic acid to inhibit the crystallization of amorphous acetaminophen. J Pharm Sci 93(11):2710–2717.  https://doi.org/10.1002/jps.20182 CrossRefGoogle Scholar
  197. 197.
    Balani PN, Wong SY, Ng WK, Widjaja E, Tan RBH, Chan SY (2010) Influence of polymer content on stabilizing milled amorphous salbutamol sulphate. Int J Pharm 391(1–2):125–136.  https://doi.org/10.1016/j.ijpharm.2010.02.029 CrossRefGoogle Scholar
  198. 198.
    Balani PN, Ng WK, Tan RB, Chan SY (2010) Influence of excipients in comilling on mitigating milling-induced amorphization or structural disorder of crystalline pharmaceutical actives. J Pharm Sci 10(5):2462–2474.  https://doi.org/10.1002/jps.21998 CrossRefGoogle Scholar
  199. 199.
    Boldyrev VV, Shakhtshneider TP, Chizhik SA (2005) On the mechanism of solubilization of drugs in the presence of poorly soluble additives. Int J Pharm 295(1-2):177–182.  https://doi.org/10.1016/j.ijpharm.2005.02.011 CrossRefGoogle Scholar
  200. 200.
    Shakhtshneider TP, Myz SA, Mikhailenko MA et al (2009) Mechanochemical synthesis of nanocomposites of drugs with inorganic oxides. Mater Manuf Process 24:1064–1071.  https://doi.org/10.1080/10426910902979124 CrossRefGoogle Scholar
  201. 201.
    Shakhtshneider TP, Myz SA, Dyakonova MA et al (2011) Mechanochemical preparation of organic-inorganic hybrid materials of drugs with inorganic oxides. Acta Phys Pol A 120(2). https://www.researchgate.net/profile/Rakesh_Kumar173/publication/262842074_Mechanochemical_Preparation_of_Organic-Inorganic_Hybrid_Materials_of_Drugs_with_Inorganic_Oxides/links/53db14970cf2e38c63397fbb.pdf
  202. 202.
    Watanabe T, Wakiyama N, Usui F, Ikeda M, Isobe T, Senna M (2001) Stability of amorphous indomethacin compounded with silica. Int J Pharm 226(1):81–91.  https://doi.org/10.1016/S0378-5173(01)00776-1 CrossRefGoogle Scholar
  203. 203.
    Lobmann K, Grohganz H, Laitinen R, Strachan C, Rades T (2013) Amino acids as co-amorphous stabilizers for poorly water soluble drugs – Part 1: Preparation, stability and dissolution enhancement. Eur J Pharm Biopharm 85(3 PART B):873–881.  https://doi.org/10.1016/j.ejpb.2013.03.014
  204. 204.
    Dudognon E, Willart JF, Caron V, Capet F, Larsson T, Descamps M (2006) Formation of budesonide/α-lactose glass solutions by ball-milling. Solid State Commun 138(2):68–71.  https://doi.org/10.1016/j.ssc.2006.02.007 CrossRefGoogle Scholar
  205. 205.
    Chieng N, Aaltonen J, Saville D, Rades T (2009) Physical characterization and stability of amorphous indomethacin and ranitidine hydrochloride binary systems prepared by mechanical activation. Eur J Pharm Biopharm 71(1):47–54.  https://doi.org/10.1016/j.ejpb.2008.06.022 CrossRefGoogle Scholar
  206. 206.
    Abe K, Ogawa T, Uchino T, Otsuka M, Takano-Ohmuro H, Senna M (2010) Highly-efficient amorphization of drugs by the participation of molecular complex. Trans Mater Res Soc Jpn 5(3):717–721.  10.14723/tmrsj.35.717 CrossRefGoogle Scholar
  207. 207.
    Taylor LS, Zografi G (1997) Spectroscopic characterization of interactions between PVP and indomethacin in amorphous molecular dispersions. Pharm Res 14(12):1691–1698.  https://doi.org/10.1023/A:1012167410376 CrossRefGoogle Scholar
  208. 208.
    Mikhailenko MA, Shakhtshneider TP, Eltsov IV et al (2016) Supramolecular architecture of betulin diacetate complexes with arabinogalactan from Larix sibirica. Carbohydr Polym 138:1–7.  https://doi.org/10.1016/j.carbpol.2015.11.047 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Institute of PhysicsUniversity of SilesiaChorzówPoland
  2. 2.Chair of Pharmaceutical Technology and Biopharmaceutics, Faculty of PharmacyJagiellonian University - Medical CollegeKrakówPoland
  3. 3.Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch of the Russian Academy of SciencesNovosibirsk State UniversityNovosibirskRussian Federation
  4. 4.AbbVieNorth ChicagoUSA

Personalised recommendations