Why Amorphous Drugs?

  • Marzena Rams-Baron
  • Renata Jachowicz
  • Elena Boldyreva
  • Deliang Zhou
  • Witold Jamroz
  • Marian Paluch


Low aqueous solubility of active pharmaceutical ingredients (APIs) is one of the most important challenges facing drug development researchers today [1, 2]. With the development of computational chemistry and high throughput screening methods it is possible to obtain a large number of compounds with attractive therapeutic activity. However, at the same time the selection of novel active molecules with suitable biopharmaceutical properties (like solubility, intestinal permeability) becomes a great challenge and a bottleneck in drug development. Statistically, more than 40% of approved drugs and even 70–90% of those under investigations are poorly water-soluble and additional efforts are required to improve their water solubility [3–5].


  1. 1.
    Savjani KT, Gajjar AK, Savjani JK (2012) Drug solubility: importance and enhancement techniques. ISRN Pharm 2012:195727. Google Scholar
  2. 2.
    Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development setting. Adv Drug Deliv Rev 23:3–25. CrossRefGoogle Scholar
  3. 3.
    Kalepu S, Nekkanti V (2015) Insoluble drug delivery strategies: review of recent advances and business prospects. Acta Pharm Sin B 5(5):442–453. CrossRefGoogle Scholar
  4. 4.
    Ku MS (2008) Use of the biopharmaceutical classification system in early drug development. AAPS J 10(1):208–212. CrossRefGoogle Scholar
  5. 5.
    Fridgeirsdottir GA, Harris R, Fischer PM, Roberts CJ (2016) Support tools in formulation development for poorly soluble drugs. J Pharm Sci 105(8):2260–2269. CrossRefGoogle Scholar
  6. 6.
    Dahan A, Miller JM, Amidon GL (2009) Prediction of solubility and permeability class membership: provisional BCS classification of the world’s top oral drugs. AAPS J 11(4):740–746. CrossRefGoogle Scholar
  7. 7.
    Amidon GL, Lenneras H, Shah VP, Crison JR (1995) A theoretical basis for a biopharmaceutical drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res 12(3):413–420. CrossRefGoogle Scholar
  8. 8.
    Babu NJ, Nangia A (2011) Solubility advantage of amorphous drugs and pharmaceutical cocrystals. Cryst Growth Des 11:2662–2679CrossRefGoogle Scholar
  9. 9.
    Kawabata Y, Wada K, Nakatani M, Yamada S, Onoue S (2011) Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: basic approaches and practical applications. Int J Pharm 420(1):1–10. CrossRefGoogle Scholar
  10. 10.
    Leuner C, Dressman J (2000) Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm 50(1):47–60. CrossRefGoogle Scholar
  11. 11.
    Horter D, Dressman JB (1997) Influence of physiochemical properties on dissolution of drugs. Adv Drug Deliv Rev 25(1):3–14. CrossRefGoogle Scholar
  12. 12.
    Newman A (2015) Pharmaceutical amorphous solid dispersions. Wiley, Hoboken, NJGoogle Scholar
  13. 13.
    Costa P, Lobo JMS (2001) Modeling and comparison of dissolution profile. Eur J Pharm Sci 13:123–133. CrossRefGoogle Scholar
  14. 14.
    Janssens S, Van den Mooter G (2009) Review: Physical chemistry of solid dispersions. J Pharm Pharmacol 61(12):1571–1586. CrossRefGoogle Scholar
  15. 15.
    Kasim NA, Whitehouse M, Ramachandran C et al (2004) Molecular properties of WHO essential drugs and provisional biopharmaceutical classification. Mol Pharm 1(1):85–96. CrossRefGoogle Scholar
  16. 16.
    Hancock BC, Zografi G (1997) Characteristics and significance of the amorphous state in pharmaceutical systems. J Pharm Sci 86(1):1–12. CrossRefGoogle Scholar
  17. 17.
    Murdande SB, Pikal MJ, Shanker RM, Bogner RH (2011) Aqueous solubility of crystalline and amorphous drugs: challenges in measurement. Pharm Dev Technol 16:187–200. CrossRefGoogle Scholar
  18. 18.
    Shah N, Sandhu H, Choi DS, Chokshi H, Malick AW (2014) Amorphous solid dispersions: theory and practice. Springer, New YorkCrossRefGoogle Scholar
  19. 19.
    Zografi G, Newman A (2017) Interrelationships between structure and the properties of amorphous solids of pharmaceutical interest. J Pharm Sci 106:5–27. CrossRefGoogle Scholar
  20. 20.
    Grohganz H, Priemel PA, Löbmann K et al (2014) Refining stability and dissolution rate of amorphous drug formulations. Expert Opin Drug Deliv 11(6):977–989. CrossRefGoogle Scholar
  21. 21.
    Hancock BC, Parks M (2000) What is the true solubility advantage for amorphous pharmaceuticals? Pharm Res 17(4):397–404. CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Marzena Rams-Baron
    • 1
  • Renata Jachowicz
    • 2
  • Elena Boldyreva
    • 3
  • Deliang Zhou
    • 4
  • Witold Jamroz
    • 2
  • Marian Paluch
    • 1
  1. 1.Institute of PhysicsUniversity of SilesiaChorzówPoland
  2. 2.Chair of Pharmaceutical Technology and Biopharmaceutics, Faculty of PharmacyJagiellonian University - Medical CollegeKrakówPoland
  3. 3.Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch of the Russian Academy of SciencesNovosibirsk State UniversityNovosibirskRussian Federation
  4. 4.AbbVieNorth ChicagoUSA

Personalised recommendations