Skip to main content

Oryza nivara Sharma et Shastry

  • Chapter
  • First Online:
The Wild Oryza Genomes

Abstract

Oryza nivara is the closest annual wild progenitor of O. sativa subspecies indica distributed in South and Southeast Asia. The accessions of O. nivara are well known to contribute genes for resistance to biotic stresses; grassy stunt virus, bacterial leaf blight, sheath blight, neck blast, brown planthopper and tolerance to abiotic stresses; drought, salinity and heat for rice improvement. In addition, loci for yield, seedling vigour, quality and biofortification were also reported from O. nivara. It has accessions with high leaf photosynthetic efficiency. DRRDhan 40 is the first O. nivara-derived variety released in 2014 in India for commercial cultivation in three states Maharashtra, Tamil Nadu and West Bengal. Chromosome segment substitution lines have been developed using O. nivara to map genes and quantitative trait loci. Genome sequencing and annotation of O. nivara in Oryza map alignment project (OMAP) revealed a genome size of 448 Mb and 36,313 coding and 1648 noncoding genes. This will help further in gene editing and silencing technology based on future breeding programmes. The development of CSSLs from O. nivara will help in more precise utilization for basic and applied studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal S, Mangrauthia SK, Sarla N (2015) Expression profiling of iron deficiency responsive microRNAs and gene targets in rice seedlings of Madhukar x Swarna recombinant inbred lines with contrasting levels of iron in seeds. Plant Soil 396:137–150. https://doi.org/10.1007/s11104-015-2561-y

    Article  CAS  Google Scholar 

  • Ali ML, Sanchez PL, Yu SB, Lorieux M, Eizenga GC (2010) Chromosome segment substitution lines: a powerful tool for the introgression of valuable genes from Oryza wild species into cultivated rice (O. sativa). Rice 3:218–234

    Article  Google Scholar 

  • Ammiraju JSS, Luo M, Goicoechea JL, Wang W, Kudrna D, Mueller C, Talag J, Kim H, Sisneros NB, Blackmon B, Fang E, Tomkins JB, Brar D, MacKill D, McCouch S, Kurata N, Lambert G, Galbraith DW, Arumuganathan K, Rao K, Walling JG, Gill N, Yu Y, SanMiguel PS, Soderlund C, Jackson S, Wing RA (2006) The Oryza bacterial artificial chromosome library resource: construction and analysis of 12 deep-coverage large-insert BAC libraries that represent the 10 genome types of the genus Oryza. Genome Res 16:140–147

    Article  PubMed  PubMed Central  Google Scholar 

  • Ammiraju JSS, Zuccolo A, Yu Y, Song X, Piegu B, Chevalier F, Walling JG, Ma J, Talag J, Brar DS, SanMiguel PJ, Jiang N, Jackson SA, Panaud O, Wing RA (2007) Evolutionary dynamics of an ancient retrotransposon family provides insights into evolution of genome size in the genus Oryza. Plant J 52:342–351

    Article  CAS  PubMed  Google Scholar 

  • Ammiraju JS, Fan C, Yu Y, Song X, Cranston KA, Pontaroli AC, Lu F, Sanyal A, Jiang N, Rambo T, Currie J (2010) Spatio-temporal patterns of genome evolution in allotetraploid species of the genus Oryza. Plant J 63:430–442

    Article  CAS  PubMed  Google Scholar 

  • Anandan A, Anumalla M, Pradhan SK, Ali J (2016) Population structure, diversity and trait association analysis in rice (Oryza sativa L.) Germplasm for early seedling vigor (ESV) using trait linked SSR Markers. PLoS ONE 11:e0152406. https://doi.org/10.1371/journal.pone.0152406

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baker RL, Yarkhunova Y, Vidal K, Ewers BE, Weinig C (2017) Polyploidy and the relationship between leaf structure and function: implications for correlated evolution of anatomy, morphology, and physiology in Brassica. BMC Plant Biol 17:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Balakrishnan D, Subrahmanyam D, Badri J, Raju AK, Rao YV, Beerelli K, Mesapogu S, Surapaneni M, Ponnuswamy R, Padmavathi G, Babu VR, Sarla N (2016) Genotype x environment interactions of yield traits in backcross introgression lines derived from Oryza sativa cv. Swarna/Oryza nivara. Front Plant Sci 7:1530. https://doi.org/10.3389/fpls.2016.01530

    Article  PubMed  PubMed Central  Google Scholar 

  • Baldrich P, Hsing YIC, Segundo BS (2016) Genome-wide analysis of polycistronic MicroRNAs in cultivated and wild rice. Genome Biol Evol 8:1104–1114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banerjee A, Roychoudhury A (2015) WRKY proteins: signaling and regulation of expression during abiotic stress responses. Sci World J 2015:807560

    Article  Google Scholar 

  • Barbier P (1989) Genetic variation and ecotypic differentiation in the wild rice Oryza rufipogon. II. Influence of the mating system and life-history traits on the genetic structure of populations. Jpn J Genet 64:273–285

    Google Scholar 

  • Bhasin H, Bhatia D, Raghuvanshi S, Lore JS, Sahi GK, Kaur B, Vikal Y, Singh K (2012) New PCR-based sequence-tagged site marker for bacterial blight resistance gene Xa38 of rice. Mol Breed 30:607–611

    Article  CAS  Google Scholar 

  • Bimolata W, Kumar A, Sundaram RM, Laha GS, Qureshi IA, Ghazi IA (2015) Nucleotide diversity analysis of three major bacterial blight resistance genes in rice. PLoS ONE 10:e0120186

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Borjas AH, De Leon TB, Subudhi PK (2016) Genetic analysis of germinating ability and seedling vigor under cold stress in US weedy rice. Euphytica 208:251–264

    Article  Google Scholar 

  • Brar DS, Khush GS (1997) Alien introgression in rice. Plant Mol Biol 35:35–47

    Article  CAS  PubMed  Google Scholar 

  • Brar DS, Khush GS (2003) Utilization of wild species of genus Oryza in rice improvement. In: Nanda JS, Sharma SD (eds) Monograph on Genus Oryza. Science Publishers, Enfield, New Hampshire, pp 283–309

    Google Scholar 

  • Brar DS, Singh K (2011) Oryza. In: Kole C (ed) Wild crop relatives: genomic and breeding resources, cereals. Springer, Berlin, Heidelberg, pp 321–365

    Chapter  Google Scholar 

  • Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto YY, Sieburth L, Voinnet O (2008) Widespread translational inhibition by plant miRNAs and siRNAs. Science 320:1185–1190

    Article  CAS  PubMed  Google Scholar 

  • Brozynska M, Copetti D, Furtado A, Wing RA, Crayn D, Fox G, Ishikawa R, Henry RJ (2016) Sequencing of Australian wild rice genomes reveals ancestral relationships with domesticated rice. Plant Biotech J 15:1–10

    Google Scholar 

  • Chandel G, Banerjee S, Verulkar SB (2010) Expression profiling of metal homeostasis related candidate genes in rice (Oryza spp.) using semi quantitative RT-PCR analysis. Rice Genet Newl 25:44–47

    Google Scholar 

  • Chang TT (1976) The origin, evolution, cultivation, dissemination, and diversification of the Asian and African rices. Euphytica 25:425–441

    Article  Google Scholar 

  • Chang TT (2003) Origin, domestication, and diversification. In: Smith CW, Dilday RH (eds) Rice: origin, history, technology and production. Wiley, Hoboken, pp 3–25

    Google Scholar 

  • Chang TT, Ou SH, Pathak MD, Ling KC, Kauffman HE (1975) The search for disease and insect resistance in rice germplasm. In: Frankel OH, Hawkes JG (eds) Crop genetic resources for today and tomorrow. Cambridge University Press, Cambridge, pp 183–200

    Google Scholar 

  • Charlesworth D (2003) Effects of inbreeding on the genetic diversity of populations. Philos Trans R Soc Lond 358:1051–1070

    Google Scholar 

  • Cheema KK, Navtej SB, Mangat GS, Das A, Vikal Y, Brar DS, Khush GS, Singh K (2008a) Development of high yielding IR64 x Oryza rufipogon (Griff.) introgression lines and identification of introgressed alien chromosome segments using SSR markers. Euphytica 160:401–409

    Article  CAS  Google Scholar 

  • Cheema KK, Grewal NK, Vikal Y, Sharma R, Lore JS, Das A, Bhatia D, Mahajan R, Gupta V, Bharaj TS, Singh K (2008b) A novel bacterial blight resistance gene from Oryza nivara mapped to 38 kb region on chromosome 4L and transferred to Oryza sativa L. Genet Res 90:397–407

    Article  CAS  Google Scholar 

  • Chen LJ, Lee DS, Song ZP, Suh HS, Lu BR (2004) Gene flow from cultivated rice (Oryzasativa) to its weedy and wild relatives. Ann Bot 93:67–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng C, Motohashi R, Tsuchimoto S, Fukuta Y, Ohtsubo H, Ohstubo E (2003) Polyphyletic origin of cultivated rice: based on the interspersion pattern of SINEs. Mol Biol Evol 20:67–75

    Article  CAS  PubMed  Google Scholar 

  • Choi JY, Purugganan M (2017) Multiple origin but single domestication led to domesticated Asian rice. bioRxiv, p 127688

    Google Scholar 

  • Chouhan SK, Singh AK, Aparajita S, Ram M, Singh PK, Singh NK (2014) Characterization and evaluation of Oryza nivara and Oryza rufipogon. The Bioscan 9:853–858

    Google Scholar 

  • Copetti D, Zhang J, El Baidouri M, Gao D, Wang J, Cossu RM, Angelova A, Maldonado LCE, Roffler S, Barghini E, Ohyanagi H, Fan C, Zuccolo A, Chen Costa, de Oliveira A, Han B, Henry R, Hsing YI, Kurata N, Wang W, Jackson SA, Panaud O, Wing RA (2015) RiTE database: a resource database for genus-wide rice genomics and evolutionary biology. BMC Genom 16:538

    Article  CAS  Google Scholar 

  • Deschamps S, Llaca V, May GD (2012) Genotyping-by-sequencing in plants. Biology 1:460–483

    Article  PubMed  PubMed Central  Google Scholar 

  • Devi SR, Singh K, Umakanth B, Vishalakshi B, Renuka P, Sudhakr KV, Prasad MS, Viraktamath BC, Babu VR, Madhav MS (2015) Development and identification of novel rice blast resistant sources and their characterization using molecular markers. Rice Sci 22:300–308

    Article  Google Scholar 

  • Dey S, Badri J, Prakasam V, Bhadana VP, Eswari KB, Laha GS, Priyanka C, Rajkumar A, Ram T (2016) Identification and agro-morphological characterization of rice genotypes resistant to sheath blight. Australas Plant Pathol 45:145–153

    Article  Google Scholar 

  • Doebley J, Stec A (1991) Genetic analysis of the morphological differences between maize and teosinte. Genetics 129:285–295

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dolores RC, Chang TT, Ramirez DA (1979) The cytogenetics of F1 hybrids from Oryzanivara Sharma et Shastry x O. sativa L. Cytologia 44:527–540

    Article  Google Scholar 

  • Dong ZY, Wang YM, Zhang ZJ, Shen Y, Lin XY, Ou XF, Han FP, Liu B (2006) Extent and pattern of DNA methylation alteration in rice lines derived from introgressive hybridization of rice and Zizania latifolia Griseb. Theor Appl Genet 113:196–205

    Article  CAS  PubMed  Google Scholar 

  • dos Santos RS, da Rosa Farias D, Pegoraro C, Rombaldi CV, Fukao T, Wing RA, de Oliveira AC (2017) Evolutionary analysis of the SUB1 locus across the Oryza genomes. Rice 10:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Du H, Ouyang Y, Zhang C, Zhang Q (2011) Complex evolution of S5, a major reproductive barrier regulator, in the cultivated rice Oryza sativa and its wild relatives. New Phytol 191:275–287

    Article  CAS  PubMed  Google Scholar 

  • Duitama J, Silva A, Sanabria Y, Cruz DF, Quintero C, Ballen C, Lorieux M, Scheffler B, Farmer A, Torres E, Oard J (2015) Whole genome sequencing of elite rice cultivars as a comprehensive information resource for marker assisted selection. PLoS ONE 10:e0124617

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eizenga GC, Rutger JN (2003) Genetics, cytogenetics, mutation, and beyond. In: Smith CW, Dilday RH (eds) Rice: origin, history, technology, and production. Wiley, Hoboken, pp 153–175

    Google Scholar 

  • Eizenga GC, Prasad B, Jackson AK, Jia MH (2013) Identification of rice sheath blight and blast quantitative trait loci in two different O. sativa/ O. nivara advanced backcross populations. Mol Breed 31:889–907

    Article  Google Scholar 

  • Eizenga GC, Ali ML, Bryant RJ, Yeater KM, McClung AM, McCouch SR (2014) Registration of the rice diversity panel 1 for genome-wide association studies. J Plant Regist 8:109–116

    Article  Google Scholar 

  • Eizenga GC, Neves PCF, Bryant RJ, Agrama HA, Mackill DJ (2016) Evaluation of a M-202 x Oryza nivara advanced backcross mapping population for seedling vigor, yield components and quality. Euphytica 208:157–171

    Article  Google Scholar 

  • Ellur RK, Khanna A, Bhowmick PK, Vinod KK, Nagarajan M, Mondal KK, Singh NK, Singh K, Prabhu KV, Singh AK (2016) Marker-aided incorporation of xa38, a novel bacterial blight resistance gene, in PB1121 and comparison of its resistance spectrum with xa13 + xa21. Sci Rep 6:2918

    Article  Google Scholar 

  • Evans JR, Terashima I, Hanba Y, Loreto F (2004) CO2 capture by the leaf. In: Smith WK, Vogelmann TC, Critchley C (eds) Photosynthetic adaptation: chloroplast to the landscape, vol 178. Ecol Stud. Springer, New York, pp 107–132

    Chapter  Google Scholar 

  • Fan C, Emerson JJ, Long M (2007) The origin of new gene. In: Pagel M, Pomiankowski A (eds) Evolutionary genomics and proteomics. Sinauer Associates Inc., Sunderland, Massachusetts, USA, pp 27–44

    Google Scholar 

  • Fan C, Zhang Y, Yu Y, Rounsley S, Long M, Wing RA (2008) The subtelomere of Oryza sativa chromosome 3 short Arm as a hot bed of new gene origination in rice. Mol Plant 1:839–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • FAOSTAT (2010) FAO statistical databases. Food and Agriculture Organization of the United Nations, Rome, Italy http://www.fao.org

  • Fujita D, Doi K, Yoshimura A, Yasui H (2004) Introgression of a resistance gene for green rice leafhopper from Oryza nivara into cultivated rice, Oryza sativa L. Rice Genet Newsl 21:64–66

    Google Scholar 

  • Fujita D, Yoshimura A, Yasui H (2010) Development of near-isogenic lines and pyramided lines carrying resistance genes to green rice leafhopper (Nephotettix cincticeps Uhler) with the Taichung 65 genetic background in rice (Oryza sativa L.). Breed Sci 60:18–27

    Article  CAS  Google Scholar 

  • Fuller DQ (2011) Pathways to Asian civilizations: tracing the origins and spread of rice and rice cultures. Rice 4:78–92

    Article  Google Scholar 

  • Furuta T, Uehara K, Angeles-Shim RB, Shim J, Nagai K, Ashikari M, Takashi T (2016) Development of chromosome segment substitution lines harbouring Oryza nivara genomic segments in Koshihikari and evaluation of yield-related traits. Breed Sci 66:845–850

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaikwad KB, Singh N, Bhatia D, Kaur R, Bains NS, Bharaj TS, Singh K (2014) Yield-Enhancing heterotic QTL transferred from wild species to cultivated rice Oryza sativa L. PLoS ONE 9:e96939. https://doi.org/10.1371/journal.pone.0096939

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ganeshan P, Jain A, Parmar B, Rao AR, Sreenu K, Mishra P, Mesapogu S, Subrahmanyam D, Ram T, Sarla N, Rai V (2016) Identification of salt tolerant rice lines among interspecific BILs developed by crossing Oryza sativa × O. rufipogon and O. sativa × O. nivara. Aus J Crop Sci 10:220–228

    Google Scholar 

  • Garaycochea S, Speranza P, Alvarez-valin F (2015) A strategy to recover a high-quality, complete plastid sequence from low-coverage whole-genome sequencing. Appl Plant Sci 3:1500022

    Article  Google Scholar 

  • Ghauri MSK (1971) Revision of the genus nephotettix matsumura (homoptera: cicadelloidea: euscelidae) based on the type material. Bull Ent Res 60:481–512

    Article  Google Scholar 

  • Giuliani R, Koteyeva N, Voznesenskaya E, Evans MA, Cousins AB, Edwards GE (2013) Coordination of leaf photosynthesis, transpiration and structural traits in rice and wild relatives (genus Oryza). Plant Physiol 162:1632–1651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glaszmann (1987) Isozyme classification of asian rice varieties. Theor Appl Genet 74:21–30

    Article  CAS  PubMed  Google Scholar 

  • Grillo MA, Li C, Fowlkes AM, Briggeman TM, Zhou A, Schemske DW, Sang T (2009) Genetic architecture for the adaptive origin of annual wild rice, Oryza nivara. Evolution 63:870–883

    Article  CAS  PubMed  Google Scholar 

  • Guo J, Liu R, Huang L, Zheng XM, Liu PL, Du YS, Cai Z, Zhou L, Wei XH, Zhang FM, Ge S (2015) Widespread and adaptive alterations in genome-wide gene expression associated with ecological divergence of two oryza species. Mol Biol Evol 33(1):62–78

    Article  PubMed  CAS  Google Scholar 

  • Hamaoka N, Yasui H, Yamagata Y, Inoue Y, Furuya N, Araki T, Ueno O, Yoshimura A (2017) A hairy-leaf gene, BLANKET LEAF, of wild Oryza nivara increases photosynthetic water use efficiency in rice. Rice 10:20

    Google Scholar 

  • Haussmann BIG, Parzies HK, Presterl T, Susic Z, Miedaner T (2004) Plant genetic resources in crop improvement. Plant Genet Resour 2:3–21

    Google Scholar 

  • Hilario MNB, van den Berg RG, Ruaraidh N, Hamilton S, McNally KL (2013) Local differentiation amidst extensive allele sharing in Oryza nivara and O. rufipogon. Ecol Evol 3(9):3047–3062

    Google Scholar 

  • Hittinger CD, Carroll SB (2007) Gene duplication and the adaptive evolution of a classic genetic switch. Nature 449:677–681

    Article  CAS  PubMed  Google Scholar 

  • Hoan NT, Sarma NP, Siddiq EA (1998) Wide hybridization for diversification of CMS in rice. Int Rice Res Not 23:5–6

    Google Scholar 

  • Huang CL, Hung CY, Chiang YC, Hwang CC, Hsu TW, Huang CC, Hung KH, Tsai KC, Wang KH, Osada N, Schaal BA (2012) Footprints of natural and artificial selection for photoperiod pathway genes in Oryza. Plant J 70:769–782

    Article  CAS  PubMed  Google Scholar 

  • Hurwitz BL, Kudrna D, Yu Y, Sebastian A, Zuccolo A, Jackson SA, Ware D, Wing RA, Stein L (2010) Rice structural variation: a comparative analysis of structural variation between rice and three of its closest relatives in the genus Oryza. Plant J. 63:990–1003

    Article  CAS  PubMed  Google Scholar 

  • International rice genome project- IRGSP (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Google Scholar 

  • International Rice Research institute (IRRI) (1968) Annual report for 1968. Los Bafios, Philippines, p 405

    Google Scholar 

  • Jacquemin J, Bhatia D, Singh K, Wing RA (2013) The international Oryza map alignment project: development of a genus-wide comparative genomics platform to help solve the 9 billion-people question. Curr Opin Plant Biol 16:147–156

    Article  CAS  PubMed  Google Scholar 

  • Jiang D, Yin C, Yu A, Zhou X, Liang W, Yuan Z, Xu Y, Yu Q, Wen T, Zhang D (2006) Duplication and expression analysis of multicopy miRNA gene family members in Arabidopsis and rice. Cell Res 16:507–518

    Article  CAS  PubMed  Google Scholar 

  • Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAS and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53

    Article  CAS  PubMed  Google Scholar 

  • Joshi SP, Gupta VS, Aggarwal RK, Ranjekar PK, Brar DS (2000) Genetic diversity and phylogenetic relationship as revealed by inter simple sequence repeat (ISSR) polymorphism in the genus Oryza. Theor Appl Genet 100:1311–1320

    Article  CAS  Google Scholar 

  • Juneja S, Das A, Joshi SV, Sharma S, Vikal Y, Patra BC, Bharaj TS, Sidhu JS, Singh K (2006) Oryza nivara (Sharma et Shastry) the progenitor of O. sativa (L.) subspecies indica harbours rich genetic diversity as measured by SSR markers. Curr Sci 91(8):1079–1085

    CAS  Google Scholar 

  • Kaladhar K, Swamy BPM, Babu AP, Reddy CS, Sarla N (2008) Mapping quantitative trait loci for yield traits in BC2F2 population derived from Swarna x O. nivara cross. Rice Genet Newsl 24:10

    Google Scholar 

  • Khan ZR, Reuda BP, Caballero P (1989) Behavioral and physiological responses of rice leaf folder Cnaphalocrocis to selected wild rices. Entomol Exp Appl 52:7–13

    Article  Google Scholar 

  • Khush GS (1971) Rice breeding for disease and insect resistance at IRRI. Oryza 8:111–119

    Google Scholar 

  • Khush GS (1977) Breeding for resistance in rice. Ann N Y Acad Sci 287:296–308

    Article  Google Scholar 

  • Khush GS (1997) Origin, dispersal, cultivation and variation of rice. Plant Mol Biol 35:25–34

    Article  CAS  PubMed  Google Scholar 

  • Khush GS (2000) Taxonomy and origin of rice. In: Singh RK, Singh US, Khush GS (eds) Aromatic Rices. Oxford and IBH Publishing Co. Pvt. Ltd., New Delhi, India, pp 5–13

    Google Scholar 

  • Khush GS, Ling KC (1974) Inheritance of resistance to grassy stunt virus and its vector in rice. J Hered 65:134–136

    Article  Google Scholar 

  • Khush GS, Ling KC, Aquino RC, Aguiero VM (1977) Breeding for resistance to grassy stunt in rice. In: International seminar of society for advancement breeding research in Asia and Oceania. Canberra, Australia 1(4b):3–9, 12–13 Feb 1997

    Google Scholar 

  • Kim K, Lee SC, Lee J, Yu Y, Yang K, Choi BS, Koh HJ, Waminal NE, Choi HI, Kim N, Jang W (2015) Complete chloroplast and ribosomal sequences for 30 accessions elucidate evolution of Oryza AA genome species. Sci Rep 5:15655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim H, Jung J, Singh N, Greenberg A, Doyle JJ, Tyagi W, Chung JW, Kimball J, Hamilton SR, McCouch SR (2016b) Population dynamics among six major groups of the Oryzarufipogon species complex, wild relative of cultivated Asian rice. Rice 9:56

    Article  PubMed  PubMed Central  Google Scholar 

  • Kiran TV, Rao YV, Subrahmanyam D, Rani NS, Bhadana VP, Rao PR, Voleti SR (2013) Variation in leaf photosynthetic characteristics in wild rice species. Photosynthetica 51:350–358

    Article  CAS  Google Scholar 

  • Kondamudi R, Swamy KN, Rao YV, Kiran TV, Suman K, Rao DS, Rao PR, Subrahmanyam D, Sarla N, Kumari BR, Voleti SR (2016) Gas exchange, carbon balance and stomatal traits in wild and cultivated rice (Oryza sativa L.) genotypes. Acta Physiol Plant 38:160

    Article  CAS  Google Scholar 

  • Kovach MJ, McCouch SR (2008) Leveraging natural diversity: back through the bottleneck. Curr Opin Plant Biol 11:193–200

    Article  CAS  PubMed  Google Scholar 

  • Kovach MJ, Calingacion MN, Fitzgerald MA, McCouch SR (2009) The origin and evolution of fragrance in rice (Oryza sativa L.). PNAS 106:14444–14449

    Google Scholar 

  • Kumar PN, Sujatha K, Laha GS, Rao KS, Mishra B, Viraktamath BC, Hari Y, Reddy CS, Balachandran SM, Ram T, Madhav MS, Rani NS, Neeraja CN, Reddy GA, Shaik H, Sundaram RM (2012) Identification and fine-mapping of Xa33, a novel gene for resistance to Xanthomonas Oryzae pv. oryzae. Phytopathol 102:222–228

    Article  CAS  Google Scholar 

  • Kwon SJ, Lee JK, Hong SW, Park YJ, McNally KL, Kim NS (2006) Genetic diversity and phylogenetic relationship in AA Oryza species as revealed by rim2/hipa cacta transposon display. Genes Genet Syst 81:93–101

    Article  CAS  PubMed  Google Scholar 

  • Lakshmi VJ, Swamy BPM, Kaladhar K, Sarla N (2010) BPH resistance in introgression lines of Swarna/Oryza nivara and KMR3/O. rufipogon. DRR News Lett 8:4

    Google Scholar 

  • Lanceras JC, Pantuwan G, Jongdee B, Toojinda T (2004) Quantitative trait loci associated with drought tolerance at reproductive stage in rice. Plant Physiol 135:384–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li SQ, Yang GL, Li SB, Li YS, Chen ZY, Zhu YG (2005) Distribution of fertility restorer genes for wild-abortive and Honglian CMS lines of rice in the AA genome species of genus Oryza. Ann Bot 96:461–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Zhou A, Sang T (2006) Genetic analysis of rice domestication syndrome with the wild annual species, Oryza nivara. New Phytol 170:185–194

    Article  CAS  PubMed  Google Scholar 

  • Li X, Guo K, Zhu X, Chen P, Li Y, Xie G, Wang L, Wang Y, Persson S, Peng L (2017) Domestication of rice has reduced the occurrence of transposable elements within gene coding regions. BMC Geno 18:55

    Article  CAS  Google Scholar 

  • Lin Z, Li X, Shannon LM, Yeh CT, Wang ML, Bai G, Peng Z, Li J, Trick HN, Clemente TE, Doebley J (2012) Parallel domestication of the Shattering1 genes in cereals. Nat Gen 44:720–724

    Article  CAS  Google Scholar 

  • Ling KC, Aguicro VM, Lee SH (1970) A mass screening method for testing resistance to grassy stunt disease of rice. Plant Dis Rep 54:565–569

    Google Scholar 

  • Liu R, Zheng XM, Zhou L, Zhou HF, Ge S (2015) Population genetic structure of Oryza rufipogon and O. nivara: Implications for the origin of O. nivara. Mol Ecol 24:5211–5228

    Article  PubMed  Google Scholar 

  • Long M, Betran E, Thornton K, Wang W (2003) The origin of new genes: glimpses from the young and old. Nat Rev Genet 4:865–875

    Article  CAS  PubMed  Google Scholar 

  • Lu BR, Naredo MBE, Juliano AB, Jackson MT (2000) Preliminary studies on taxonomy and biosystematics of the AA genome Oryza species (Poaceae). In: Jacobs SWL, Everett J (eds) Grasses: systematics and evolution. CSIRO, Melbourne Australia, pp 51–58

    Google Scholar 

  • Lu BR, Song G, Sang T, Chen JK, Hong DY (2001) The current taxonomy and perplexity of the genus Oryza (Poaceae). Acta Phytotax Sin 39:373–388

    Google Scholar 

  • Lu BR, Zheng KL, Qian HR, Zhuang JY (2002) Genetic differentiation of wild relatives of rice as referred by the RFLP analysis. Theor Appl Genet 106:101–106

    Article  CAS  PubMed  Google Scholar 

  • Luo MC, Thomas C, You FM, Hsiao J, Ouyang S, Buell CR, Malandro M, McGuire PE, Anderson OD, Dvorak J (2003) High-throughput fingerprinting of bacterial artificial chromosomes using the snapshot labeling kit and sizing of restriction fragments by capillary electrophoresis. Genomics 82:378–389

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Fu Y, Zhao X, Jiang L, Zhu Z, Gu P, Xu W, Su Z, Sun C, Tan L (2016) Genomic structure analysis of a set of Oryza nivara introgression lines and identification of yield-associated QTLs using whole-genome resequencing. Sci Rep 6:27425. https://doi.org/10.1038/srep27425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madurangi SAP, Samarasinghe WLG, Senanayake SGJN, Hemachandra PV, Ratnesekara D (2011) Resistance of Oryza nivara and Oryza eichingeri derived lines to brown planthopper, Nilaparvata lugens (Stal). J Natl Sci Found Sri Lanka 39:175–181

    Article  Google Scholar 

  • Madurangi SAP, Ratnasekera D, Senanayake SGJN, Samarasinghe WLG, Hemachandra PV (2013) Antixenosis and antibiosis effects of Oryza nivara accessions harbouring bph2 gene on brown planthopper [Nilaparvata lugens (Stal)]. J Natl Sci Found Sri Lanka 41:147–154

    Article  CAS  Google Scholar 

  • Magadum S, Banerjee U, Murugan P, Gangapur D, Ravikesavan R (2013) Gene duplication as a major force in evolution. J Genet 92:155–161

    Article  PubMed  Google Scholar 

  • Mahmoud AA, Sukumar S, Krishnan HB (2008) Interspecific rice hybrid of Oryza sativa x Oryza nivara reveals a significant increase in seed protein content. J Agric Food Chem 56:476–482

    Article  CAS  PubMed  Google Scholar 

  • Makino A (2011) Photosynthesis, grain yield, and nitrogen utilization in rice and wheat. Plant Physiol 155:125–129

    Article  CAS  PubMed  Google Scholar 

  • Malathi S, Divya B, Sukumar M, Krishnam Raju A, Venkateswara Rao YV, Tripura Venkata VGN, Sarla N (2016) Genetic characterization and population structure of Indian rice cultivars and wild genotypes using core set markers. 3 Biotech 6:95

    Google Scholar 

  • Malathi S, Divya B, Sukumar M, Krishnam Raju A, Venkateswara Rao Y, Tripura Venkata VGN, Neelamraju Sarla (2017) Identification of major effect QTLs for agronomic traits and CSSLs in rice from Swarna/O. nivara derived backcross inbred lines. Front Plant Sci 8:1027. https://doi.org/10.3389/fpls.2017.01027

    Article  Google Scholar 

  • Mangrauthia SK, Agarwal S, Sailaja B, Madhav MS, Voleti SR (2013) MicroRNAs and their role in salt stress response in plants. In: Ahmad P, Azooz MM, Prasad MNV (eds) Salt stress in plants. Springer, New York, NY, pp 15–46

    Chapter  Google Scholar 

  • Mangrauthia SK, Sailaja B, Agarwal S, Prasanth VV, Voleti SR, Sarla N, Subrahmanyam D (2017) Genome-wide changes in microRNA expression during short and prolonged heat stress and recovery in contrasting rice cultivars. J Exp Bot 68(9):2399–2412. https://doi.org/10.1093/jxb/erx111

    Article  PubMed  PubMed Central  Google Scholar 

  • Masood MS, Nishikawa T, Fukuoka S, Njenga PK, Tsudzuki T, Kadowak K (2004) The complete nucleotide sequence of wild rice (Oryza nivara) chloroplast genome: first genome wide comparative sequence analysis of wild and cultivated rice. Gene 340:133–139

    Article  CAS  Google Scholar 

  • Matsubara K, Ito S, Nonoue Y, Ando T, Yano M (2007) A novel gene for hybrid breakdown found in a cross between japonica and indica cultivars in rice. Rice Genet Newsl 23:11–13

    Google Scholar 

  • Melonek J, Stone JD, Small I (2016) Evolutionary plasticity of restorer-of-fertility-like proteins in rice. Sci Rep 6:35152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menguer PK, Sperotto RA, Ricachenevsky FK (2017) A walk on the wild side: Oryza species as source for rice abiotic stress tolerance. Genet Mol Biol 40:238–252

    Article  PubMed  PubMed Central  Google Scholar 

  • Minx P, Cordum H, Wilson R (2005) Sequence, annotation, and analysis of synteny between rice chromosome 3 and diverged grass species. Genome Res 15:1284–1291

    Article  PubMed  CAS  Google Scholar 

  • Miura K, Yamamoto E, Morinaka Y, Takashi T, Kitano H, Matsuoka M, Ashikari M (2008) The hybrid breakdown 1(t) locus induces interspecific hybrid breakdown between rice Oryza sativa cv. Koshihikari and its wild relative O. nivara. Breed Sci 58:99–105

    Article  CAS  Google Scholar 

  • Morishima H (2001) Evolution and domestication of rice. In: Khush GS, Brar DS, Hardy B (eds) Rice genetics IV. Proceedings of the fourth international rice genetics symposium. IRRI, Los Banos, The Philippines, pp 63–77

    Google Scholar 

  • Morishima H, Sano Y, Oka HI (1992) Evolutionary studies in cultivated rice and its wild relatives. Oxf Surv Evol Biol 8:135–184

    Google Scholar 

  • Morishima H, Shimamoto Y, Sano Y, Sato YI (1984) Observations on wild and cultivated rices in Thailand for ecological-genetic study. Report of study-tour in 1983. Rep Nat Inst Genet, Japan

    Google Scholar 

  • Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JD (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312(80):436–439

    Google Scholar 

  • Nayak J, Mathan J, Mohanty M, Pradhan C (2014) An in vitro hydroponic study on physiological and biochemical responses of indian wild rice to varying doses of hexavalent chromium. Int Res J Env Sci 3:20–28

    CAS  Google Scholar 

  • Niroula RK, Subedi LP, Upadhyay MP (2009) Cytogenetic analyses of intragenomic rice hybrids derived from Oryza sativa L. and O. nivara Sharma et Shastry. Bot Res Int 4:277–283

    Google Scholar 

  • Niroula RK, Pucciariello C, Ho VT, Novi G, Fukao T, Perata P (2012) SUB1A-dependent and independent mechanisms are involved in the flooding tolerance of wild rice species. Plant J 72:282–293

    Article  CAS  PubMed  Google Scholar 

  • Oka HI (1988) Origin of cultivated rice. Japan Scientific Societies Press, Tokyo, Elsevier, Amsterdam Oxford, New York, Tokyo

    Google Scholar 

  • Oka HI, Morishima H (1982) Phylogenetic differentiation of cultivated rice, XXIII. Potentiality of wild progenitors to evolve the indica and japonica types of rice cultivars. Euphytica 31:41–50

    Article  Google Scholar 

  • Park KC, Kim NH, Cho YS, Kang KH, Lee JK, Kim NS (2003) Genetic variations of AA genome Oryza species measured by MITE-AFLP. Theor Appl Genet 107:203–209

    Article  CAS  PubMed  Google Scholar 

  • Peng ZY, Zhang H, Liu T, Dzikiewicz KM, Li S, Wang X, Hu G, Zhu Z, Wei X, Zhu QH, Sun Z (2009) Characterization of the genome expression trends in the heading-stage panicle of six rice lineages. Genomics 93:169–178

    Article  CAS  PubMed  Google Scholar 

  • Poorter H, Remkes C (1990) Leaf area ratio and net assimilation rate of 24 wild species differing in relative growth rate. Oecologia 83:553–559

    Article  PubMed  Google Scholar 

  • Prasad B, Eizenga GC (2008) Rice sheath blight disease resistance identified in Oryza spp. accessions. Plant Dis 92:1503–1509

    Article  Google Scholar 

  • Prasanth VV, Chakravarthi DV, Kiran TV, Rao YV, Panigrahy M, Mangrauthia SK, Viraktamath BC, Subrahmanyam D, Voleti SR, Sarla N (2012) Evaluation of rice germplasm and introgression lines for heat tolerance. Ann Biol Res 3:5060–5068

    CAS  Google Scholar 

  • Purugganan MD, Rounsley SD, Schmidt RJ, Yanofsky MF (1995) Molecular evolution of flower development: diversification of the plants MADS-box regulatory gene family. Genetics 140:345–356

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rai V, Sreenu K, Pushpalatha B, Babu Brajendra, Sandhya G, Sarla N (2010) Swarna/Oryza nivara and KMR3/O. rufipogon introgression lines tolerant to drought and salinity. DRR News Lett 8:4

    Google Scholar 

  • Sakai H and Itoh T (2010) Massive gene losses in Asian cultivated rice unveiled by comparative genome analysis. BMC Genomics 11:121

    Google Scholar 

  • Sanchez PL, Wing RA, Brar DS (2013) The wild relative of rice: genomes and genomics. In: Zhang Q, Wing RA (eds) Genetics and genomics of rice, vol 5. Plant genetics and genomics: crops and models. Springer, New York, pp 9–25. https://doi.org/10.1007/978-1-4614-7903-1_2

    Chapter  Google Scholar 

  • Sang T, Ge S (2007) The puzzle of rice domestication. J Int Plant Bio 49:760–768

    Article  CAS  Google Scholar 

  • Sano Y, Morishima H, Oka HI (1980) Intermediate perennial-annual populations of Oryza perennis found in Thailand and their evolutionary significance. J Plant Res 93:291–305

    Google Scholar 

  • Sarao PS, Sahi GK, Neelam K, Mangat GS, Patra BC, Singh K (2016) Donors for resistance to Brown planthopper Nilaparvata lugens (Stål) from wild rice species. Rice Sci 23:219–224

    Article  Google Scholar 

  • Sarla N, Bobba S, Siddiq EA (2003) ISSR and SSR markers based on AG and GA repeats delineate geographically diverse Oryza nivara accessions and reveal rare alleles. Curr Sci 84:683–690

    Google Scholar 

  • Second G (1982) Origin of the genetic diversity of cultivated rice (Oryza ssp.). Study of the polymorphism scored at 40 isozyme loci. Jpn J Genet 57:25–57

    Article  Google Scholar 

  • Shakiba E, Eizenga GC (2014) Unraveling the secrets of rice wildspecies. In: Yan WG, Bao JS (eds) Rice: germplasm, genetics and improvement. Intech, Croatia, pp 1–58

    Google Scholar 

  • Sharma SD, Shastry SVS (1965) Taxonomic studies in genus Oryza L: III. O. rufipogon griff.sensu stricto and O. nivara Sharma et Shastry nom. nov. Indian J Genet Plant Breed 25:157–167

    Google Scholar 

  • Sharma SD, Tripathy S, Biswal J (2000) Origin of O. sativa and its ecotypes. In: Nanda JS (ed) Rice breeding and genetics: research priorities and challenges. Science Publications, Enfield, NH, USA, pp 349–369

    Google Scholar 

  • Sharma S, Upadhyaya HD, Varshney RK, Gowda CLL (2013) Pre-breeding for diversification of primary gene pool and genetic enhancement of grain legumes. Front Plant Sci 4:309

    Google Scholar 

  • Shiu SH, Byrnes JK, Pan R, Zhang P, Li WH (2006) Role of positive selection in the retention of duplicate genes in mammalian genomes. Proc Natl Acad Sci USA 103:2232–2236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva J, ScheZer B, Sanabria Y, De Guzman CD, Galam D, Farmer A, Woodward J, May G, Oard J (2012) Identification of candidate genes in rice for resistance to sheath blight disease by whole genome sequencing. Theor Appl Genet 124:63–74

    Article  CAS  PubMed  Google Scholar 

  • Singh BP, Jayaswal PK, Singh B, Singh PK, Kumar V, Mishra S, Singh N, Panda K, Singh NK (2015) Natural allelic diversity in OsDREB1F gene in the Indian wild rice germplasm led to ascertain its association with drought tolerance. Plant Cell Rep 34:993–1004

    Article  CAS  PubMed  Google Scholar 

  • Soderlund C, Humphray S, Dunham A, French L (2000) Contigs built with fingerprints, markers, and FPC V4.7. Genome Res 10:1772–1787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stander JR (1993) Pre-breeding from the perspective of the private plant breeder. J Sugar Beet Res 30:197–208

    Google Scholar 

  • Sunkar R, Jagadeeswaran G (2008) In silico identification of conserved microRNAs in large number of diverse plant species. BMC Plant Biol 8:37

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sunkar R, Chinnusamy V, Zhu J, Zhu JK (2007) Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci 12:301–309

    Article  CAS  PubMed  Google Scholar 

  • Swamy BPM, Sarla N (2011) Meta-analysis of yield QTLs derived from inter-specific crosses of rice reveals consensus regions and candidate genes. Plant Mol Biol Rep 29:663–680

    Article  Google Scholar 

  • Swamy BPM, Kaladhar K, Anuradha K, Batchu AK, Longvah T, Viraktamath BC and Sarla N (2011a) Enhancing iron and zinc concentration in rice grains using wild species. In: ADNAT convention and international symposium on genomics and biodiversity, CCMB, Hyderabad, 23–25 Feb 2011, p 71

    Google Scholar 

  • Swamy BPM, Kaladhar K, Ramesha MS, Viraktamath BC, Sarla N (2011b) Molecular mapping of QTLs for yield and yield-related traits in Oryza sativa cv Swarna x O. nivara (IRGC81848) backcross population. Rice Sci 18:178–186

    Article  Google Scholar 

  • Swamy BPM, Kaladhar K, Shobharani N, Prasad GSV, Viraktamath BC, Reddy GA, Sarla N (2012) QTL analysis for grain quality traits in 2 BC2F2 populations derived from crosses between Oryza sativa cv Swarna and 2 accessions of O. nivara. J Heredity 103:442–452

    Article  CAS  Google Scholar 

  • Swamy BPM, Kaladhar K, Reddy GA, Viraktamath BC, Sarla N (2014) Mapping and introgression of QTL for yield and related traits in two backcross populations derived from Oryza sativa cv. Swarna and two accessions of O. nivara. J Genet 93:643–654

    Article  PubMed  Google Scholar 

  • Takahashi H, Sato YI, Nakamura I (2008) Evolutionary analysis of two plastid DNA sequences in cultivated and wild species of Oryza. Breed Sci 58:225–233

    Article  CAS  Google Scholar 

  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066

    Article  CAS  PubMed  Google Scholar 

  • Tanksley SD, Nelson JC (1996) Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 92:191–203

    Article  CAS  PubMed  Google Scholar 

  • Thomson MJ, Septiningsih EM, Suwardjo F, Santoso TJ, Silitonga TS, McCouch SR (2007) Genetic diversity analysis of traditional and improved Indonesian rice (Oryza sativa L.) germplasm using microsatellite markers. Theor Appl Genet 114:559–568

    Google Scholar 

  • Thanh PT, Sripichitt P, Chanprame S, Peyachoknagul S (2006) Transfer of drought resistant character from wild rice (Oryza meridionalis and Oryza nivara) to cultivated rice (Oryza sativa L.) by backcrossing and immature embryo culture. Kasetsart J (Nat Sci) 40:582–594

    Google Scholar 

  • Tian M, Yu G, He N, Hou J (2016) Leaf morphological and anatomical traits from tropical to temperate coniferous forests: Mechanisms and influencing factors. Sci Rep 6:19703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tong W, Kim TS, Park YJ (2016) Rice chloroplast genome variation architecture and phylogenetic dissection in diverse Oryza species assessed by whole-genome resequencing. Rice 9:57

    Article  PubMed  PubMed Central  Google Scholar 

  • Uehara K, Furuta T, Komeda N, Ashikari M (2016) Identification of responsible genes involved in Awn development and discussion about rice domestication process. In: Poster 0726, Plant and animal genome XXIV conference 8–13 Jan 2016, San Diego, USA

    Google Scholar 

  • Vaughan DA (1989) The genus Oryza L.: current status of taxonomy. IRRI, Los Baños, The Philippines

    Google Scholar 

  • Valkoun JJ (2001) Wheat pre-breeding using wild progenitors. Euphytica 119:17–23

    Google Scholar 

  • Vaughan DA, Morishima H (2003) Biosystematics of the genus Oryza. In: Smith CW, Dilday RH (eds) Rice: origin, history, technology and production. Wiley, New York, pp 27–65

    Google Scholar 

  • Vaughan DA, Lu BR, Tomooka N (2008) The evolving story of rice evolution. Plant Sci 174:394–408

    Article  CAS  Google Scholar 

  • Wambugu PW, Brozynska M, Furtado A, Waters DL, Henry RJ (2015) Relationships of wild and domesticated rices (Oryza AA genome species) based upon whole chloroplast genome sequences. Sci Rep 5:13957

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang ZY, Second G, Tanksley SD (1992) Polymorphism and phylogenetic relationships among species in the genus Oryza as determined by analysis of nuclear RFLPs. Theor Appl Genet 83:565–581

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Zheng H, Fan C, Li J, Shi J, Cai Z, Zhang G, Liu D, Zhang J, Vang S, Lu Z, Wong GKS, Long M, Wang J (2006) High rate of chimeric gene origination by retroposition in plant genomes. Plant Cell 18:1791–1802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Win KT, Yamagata Y, Miyazaki Y, Doi K, Yasui H, Yoshimura A (2010) Independent evolution of a new allele of F1 pollen sterility gene S27 encoding mitochondrial ribosomal protein L27 in Oryza nivara. Theor Appl Genet 122:385–394

    Article  PubMed  CAS  Google Scholar 

  • Win KT, Yamagata Y, Miyazaki Y, Doi K, Yasui H, Yoshimura A (2011) Independent evolution of a new allele of F1 pollen sterility gene S27 encoding mitochondrial ribosomal protein L27 in Oryza nivara. Theor Appl Genet 122:385–394

    Article  CAS  PubMed  Google Scholar 

  • Win KT, Kubo T, Miyazaki Y, Doi K, Yasui H, Yamagata Y, Yoshimura A (2012) Molecular mapping of two loci conferring F1 pollen sterility in inter and intra specific crosses of rice. Genes Gen Genom 6:16–21

    Google Scholar 

  • Wing RA, Ammiraju JSS, Luo M, Kim D, Goicoechea JL, Wang W, Nelson W, Rao K, Brar D, Mackill DJ, Han B, Soderlund C, Stein L, SanMiguel P, Jackson S (2005) The Oryza map alignment project: the golden path to unlocking the genetic potential of wild rice species. Plant Mol Biol 59:53–62

    Article  CAS  PubMed  Google Scholar 

  • Wu MT, Li CP, Chen JR, Huang SH, Ku HM (2009) Mapping of brown plant hopper resistance gene introgressed from Oryza nivara into cultivated rice, O. sativa. In: International symposium. Rice research in the era of global warming, pp 56–65

    Google Scholar 

  • Xu X, Liu X, Ge S, Jensen JD, Hu F, Li X, Dong Y, Gutenkunst RN, Fang L, Huang L, Li J, He W, Zhang G, Zheng X, Zhang F, Li Y, Yu C, Kristiansen K, Zhang X, Wang J, Wright M, McCouch S, Nielsen R, Wang J, Wang W (2012) Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nat Biotech 30:105–111

    Article  CAS  Google Scholar 

  • Xu H, Watanabe KA, Zhang L, Shen QJ (2016) WRKY transcription factor genes in wild rice Oryza nivara. DNA Res 23:311–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamanaka S, Nakamura I, Nakai H, Sato YI (2003) Dual origin of the cultivated rice based on molecular markers of newly collected annual and perennial strains of wild rice species, Oryza nivara and O. rufipogon. Genet Res Crop Evol 50:529–538

    Article  CAS  Google Scholar 

  • Yamanaka S, Nakamura I, Nakai H, Sato YI (2004) Annual-perennial and indica-japonica differentiations related to retrotransposon polymorphism at waxy locus in wild relatives of rice. Online Available: http://www.carleton.ca/~bgordon/Rice/papers/yama20.htm

  • Yang Y, Zhou J, Li J, Xu P, Zhang Y, Tao D (2016) Mapping QTLs for hybrid sterility in three AA genome wild species of Oryza. Breed Sci 66:367–371

    Google Scholar 

  • Yokosho K, Yamaji N, Fujii-Kashino M, Ma JF (2016) Retrotransposon-mediated aluminum tolerance through enhanced expression of the citrate transporter OsFRDL4. Plant Physiol 172:2327–2336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang QJ, Zhu T, Xia EH, Shi C, Liu YL, Zhang Y, Liu Y, Jiang WK, Zhao YJ, Mao SY, Zhang LP (2014) Rapid diversification of five Oryza AA genomes associated with rice adaptation. Proc Natl Acad Sci 111:4954–4962. https://doi.org/10.1073/pnas.1418307111

    Article  CAS  Google Scholar 

  • Zhu Q, Ge S (2005) Phylogenetic relationships among A-genome species of the genus Oryza revealed by intron sequences of four nuclear genes. New Phytol 167:249–265

    Article  CAS  PubMed  Google Scholar 

  • Zhu Q, Zheng X, Luo J, Gaut BS, Ge S (2007) Multilocus analysis of nucleotide variation of Oryza sativa and its wild relatives: severe bottleneck during domestication of rice. Mol Biol Evol 24:875–888

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge Department of Biotechnology, Government of India, project DBT No. BT/AB/FG-2 (PHII) IA/2009 and ICAR-National Professor Project to NS for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neelamraju Sarla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Haritha, G., Malathi, S., Divya, B., Swamy, B.P.M., Mangrauthia, S.K., Sarla, N. (2018). Oryza nivara Sharma et Shastry. In: Mondal, T., Henry, R. (eds) The Wild Oryza Genomes. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-71997-9_20

Download citation

Publish with us

Policies and ethics