Skip to main content

The Morphology of Pits and Fissures

  • Chapter
  • First Online:
Pit and Fissure Sealants
  • 1274 Accesses

Abstract

Tooth development commences at the end of the fifth week of human gestation. It is commonly divided into the following stages: the initiation stage, the bud stage, the cap stage, the bell stage, and finally maturation. The aim of this chapter is to describe the process of early tooth development, through maturation and culminating in coronal formation. The morphology of pits and fissures is characterized showing serial ground sections and micro-CTs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cobourne MT, Sharpe PT. Fundamentals of oral histology and physiology. Ames: Wiley-Blackwell; 2014.

    Google Scholar 

  2. Nancy A, Ten Cate AR. Ten Cate’s oral histology. Oxford: Elsevier Ltd; 2012.

    Google Scholar 

  3. Tucker A, Sharpe P. The cutting-edge of mammalian development; how the embryo makes teeth. Nat Rev Genet. 2004;5(7):499–508. https://doi.org/10.1038/nrg1380.

    Article  PubMed  Google Scholar 

  4. Caton J, Tucker AS. Current knowledge of tooth development: patterning and mineralization of the murine dentition. J Anat. 2009;214(4):502–15. https://doi.org/10.1111/j.1469-7580.2008.01014.x.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Osborn JW, Ten Cate AR. Morphogenesis. In: Osborn JW, Ten Cate AR, editors. Advanced dental histology. Bristol: Wright PSG; 1983. p. 46–55.

    Google Scholar 

  6. Butler PM. The ontogeny of molar pattern. Biol Rev. 1956;31:30–69.

    Article  Google Scholar 

  7. van Valen L. An analysis of developmental fields. Dev Biol. 1970;23:456–77.

    Article  PubMed  Google Scholar 

  8. Tucker AS, Sharpe PT. Molecular genetics of tooth morphogenesis and patterning: the right shape in the right place. J Dent Res. 1999;78(4):826–34. https://doi.org/10.1177/00220345990780040201.

    Article  PubMed  Google Scholar 

  9. Schröder HE. Orale strukturbiologie. 5th ed. Stuttgart: Thieme; 2000.

    Google Scholar 

  10. Chandra S, Chandra S, Chandra S. Textbook of dental and oral anatomy physiology and occlusion. New Delhi: Jaypee Brothers Medical Publishers; 2008.

    Google Scholar 

  11. Fejerskov O, Melsen B, Karring T. Morphometric analysis of occlusal fissures in human premolars. Scand J Dent Res. 1973;81:505–9.

    PubMed  Google Scholar 

  12. Scheid RC, Weiss G. Woelfel’s dental anatomy: its relevance to dentistry. Baltimore: Wolters Kluwer; 2011.

    Google Scholar 

  13. Alt KW, Rösing FW, Teschler-Nicola M. Dental anthropology: fundamentals, limits and prospects. Wien: Springer; 1998.

    Book  Google Scholar 

  14. Gillings B, Buonocore M. Thickness of enamel at the base of pits and fissures in human molars and bicuspids. J Dent Res. 1961;40:119–33.

    Article  PubMed  Google Scholar 

  15. Nagano T. Relation between the form of pit and fissure and the primary lesion of caries. Shikwa Gakuho. 1960;60:80.

    Google Scholar 

  16. Awazawa Y. Electron microscopic study on the hypomineralized enamel areas descending from the floors of occlusal fissures toward the amelo-dentinal junctions. J Nihon Univ Sch Dent. 1966;8:33–44. https://doi.org/10.2334/josnusd1959.8.33.

    Article  PubMed  Google Scholar 

  17. Galil KA, Gwinnett AJ. Histology of fissures in human unerupted teeth. J Dent Res. 1975;54:960–4. https://doi.org/10.1177/00220345750540053401.

    Article  PubMed  Google Scholar 

  18. Galil KA, Gwinnett AJ. Three-dimensional replicas of pits and fissures in human teeth: scanning electron microscopy study. Arch Oral Biol. 1975;20:493IN5–5IN8.

    Google Scholar 

  19. Selecman JB, Owens BM, Johnson WW. Effect of preparation technique, fissure morphology, and material characteristics on the in vitro margin permeability and penetrability of pit and fissure sealants. Pediatr Dent. 2007;29(4):308–14.

    PubMed  Google Scholar 

  20. Iyer RR, Gopalakrishnapillai AC, Kalantharakath T. Comparisons of in vitro penetration and adaptation of moisture tolerant resin sealant and conventional resin sealant in different fissure types. Chin J Dent Res. 2013;16(2):127–36.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrin Bekes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing Switzerland

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bekes, K., Tangl, S., Dobsak, A., Gruber, R. (2018). The Morphology of Pits and Fissures. In: Bekes, K. (eds) Pit and Fissure Sealants. Springer, Cham. https://doi.org/10.1007/978-3-319-71979-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71979-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71978-8

  • Online ISBN: 978-3-319-71979-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics