Skip to main content

Latent Variable Modeling of Neural Population Dynamics

  • Chapter
Dynamic Neuroscience
  • 1729 Accesses

Abstract

Neural activity is noisy (“stochastic”) and dynamic at various spatiotemporal scales. We consider a general class of latent variable models for characterizing neuronal population dynamics or analyzing various sorts of neural data. The inference of latent variable models can lead to novel solutions for signal detection, neural decoding, denoising, dimensionality reduction, and data visualization. We review general modeling and inference strategies for latent variable models. Finally, we illustrate our methods with several neuroscience applications using population spike trains recorded from the animal’s hippocampus and neocortices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aghagolzadeh, M., & Truccolo, W. (2016). Inference and decoding of motor cortex low-dimensional dynamics via latent state-space models. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 24(2), 272–282.

    Google Scholar 

  • Ames, K. C., Ryu, S. I., & Shenoy, K. V. (2014). Neural dynamics of reaching following incorrect or absent motor preparation. Neuron, 81(2), 438–451.

    Google Scholar 

  • Beal, M., & Ghahramani, Z. (2006). Variational Bayesian learning of directed graphical models. Bayesian Analysis, 1(4), 793–832.

    Google Scholar 

  • Buesing, L., Macke, J. H., & Sahani, M. (2012a). Learning stable, regularized latent models of neural population dynamics. Network: Computation in Neural Systems, 23, 24–47.

    Google Scholar 

  • Buesing, L., Macke, J. H., & Sahani, M. (2012b). Spectral learning of linear dynamics from generalised-linear observations with application to neural population data. In Advances in neural information processing systems (Vol. 25, pp. 1682–1690). New York: Curran Associates.

    Google Scholar 

  • Buonomano, D. V., & Laje, R. (2010). Population clocks: Motor timing with neural dynamics. Trends in Cognitive Science, 14, 520–527.

    Google Scholar 

  • Bushnell, M. C., Ceko, M., & Low, L. A. (2013). Cognitive and emotional control of pain and its disruption in chronic pain. Nature Review Neuroscience, 14, 502–511.

    Google Scholar 

  • Chen, Z. (2013). An overview of Bayesian methods for neural spike train analysis. Computational Intelligence and Neuroscience, 2013, 251905.

    Google Scholar 

  • Chen, Z. (2015a). Estimating latent attentional states based on simultaneous binary and continuous behavioral measures. Computational Intelligence in Neuroscience, 2015, 493769.

    Google Scholar 

  • Chen, Z. (Ed.). (2015b). Advanced state space methods in neural and clinical data. Cambridge: Cambridge University Press.

    Google Scholar 

  • Chen, Z. (2017). Unfolding representations of trajectory coding in neuronal population spike activity. In Proceedings of Conference on Information Sciences and Systems (CISS’17).

    Google Scholar 

  • Chen, Z., Barbieri, R., & Brown, E. N. (2010). State-space modeling of neural spike train and behavioral data. In K. Oweiss (Ed.), Statistical signal processing for neuroscience and neurotechnology (pp. 175–218). Amsterdam: Elsevier.

    Google Scholar 

  • Chen, Z., Gomperts, S. N., Yamamoto, J., & Wilson, M. A. (2014). Neural representation of spatial topology in the rodent hippocampus. Neural Computation, 26(1), 1–39.

    Google Scholar 

  • Chen, Z., Grosmark, A. D., Penagos, H., & Wilson, M. A. (2016a). Uncovering representations of sleep-associated hippocampal ensemble spike activity. Scientific Reports, 6, 32193.

    Google Scholar 

  • Chen, Z., Hu, S., Zhang, Q., & Wang, J. (2017b). Quickest detection of abrupt changes in neuronal ensemble spiking activity using model-based and model-free approaches. In Proceedings of 8th International IEEE/EMBS Conference on Neural Engineering (NER).

    Google Scholar 

  • Chen, G., King, J. A., Burgess, N., & O’Keefe, J. (2013). How vision and movement combine in the hippocampal place code. Proceedings of National Academy of Sciences USA, 110, 378–383.

    Google Scholar 

  • Chen, Z., Kloosterman, F., Brown, E. N., & Wilson, M. A. (2012). Uncovering spatial topology represented by rat hippocampal population neuronal codes. Journal of Computational Neuroscience, 33(2), 227–255.

    Google Scholar 

  • Chen, Z., Linderman, S., & Wilson, M. A. (2016b). Bayesian nonparametric methods for discovering latent structures of rat hippocampal ensemble spikes. In Proceedings of IEEE Workshop on Machine Learning for Signal Processing (pp. 1–6).

    Google Scholar 

  • Chen, Z., & Wilson, M. A. (2017). Deciphering neural codes of memory during sleep. Trends in Neurosciences, 40(5), 260–275.

    Google Scholar 

  • Chen, Z., Zhang, Q., Tong, A. P. S., Manders, T. R., & Wang, J. (2017a). Deciphering neuronal population codes for acute thermal pain. Journal of Neural Engineering, 14(3), 036023.

    Google Scholar 

  • Ching, W.-K., Huang, X., Ng, M. K., & Siu, T.-K. (2015). Markov chains: Models, algorithms and applications (2nd ed.). Berlin: Springer.

    Google Scholar 

  • Chung, J., Kastner, K., Dinh, L., Goel, K., Courville, A., & Bengio, Y. (2016). A Recurrent Latent Variable Model for Sequential Data. Technical report. https://arxiv.org/pdf/1506.02216.pdf

  • Churchland, M. M., Cunningham, J. P., Kaufman, M. T., Foster, J. D., Nuyujukian, P., Ryu, S. I., et al. (2012). Neural population dynamics during reaching. Nature, 487, 51–56.

    Google Scholar 

  • Cunningham, J. P., & Yu, B. M. (2014). Dimensionality reduction for large-scale neural recordings. Nature Neuroscience, 17(11), 1500–1509.

    Google Scholar 

  • Curto, C., & Itskov, V. (2008). Cell groups reveal structure of stimulus space. PLoS Computational Biology, 4(10), e1000205.

    Google Scholar 

  • Dabaghian, Y., Cohn, A. G., & Frank, L. M. (2011). Topological coding in the hippocampus. In Computational modeling and simulation of intellect: Current state and future prospectives (pp. 293–320). Hershey: IGI Global.

    Google Scholar 

  • Dabaghian, Y., Memoli, F., Frank, L. M., & Carlsson, G. (2012). A topological paradigm for hippocampal spatial map formation using persistent homology. PLoS Computational Biology, 8(8), e1002581.

    Google Scholar 

  • Dahl, G., Yu, D., Deng, L., & Acero, A. (2012). Context-dependent, pre-trained deep neural networks for large vocabulary speech recognition. IEEE Transactions on Audio, Speech & Language Processing, 20(1), 30–42.

    Google Scholar 

  • Davidson, T. J., Kloostserman, F., & Wilson, M. A. (2009). Hippocampal replay of extended experience. Neuron, 63, 497–507.

    Google Scholar 

  • Dempster, A., Laird, N., & Rubin, D. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39(1), 1–38.

    Google Scholar 

  • Eden, U. T., Frank, L. M., Barbieri, R., Solo, V., & Brown, E. N. (2004). Dynamic analysis of neural encoding by point process adaptive filtering. Neural Computation, 16(5), 971–998.

    Google Scholar 

  • Feeney, D. F., Meyer, F. G., Noone, N., & Enoka, R. M. (2017). A latent low-dimensional common input drives a pool of motor neurons: A probabilistic latent state-space model. Journal of Neurophysiology, 117, 1690–1701.

    Google Scholar 

  • Fine, S., Singer, Y., & Tishby, N. (1998). The hierarchical hidden Markov model: Analysis and applications. Machine Learning, 32, 41–62.

    Google Scholar 

  • Fuchs, P. N., Peng, Y. B., Boyette-Davis, J. A., & Uhelski, M. L. (2014). The anterior cingulate cortex and pain processing. Frontiers in Integrative Neuroscience, 8, 35.

    Google Scholar 

  • Gao, Y., Archer, E., Paninski, L., & Cunningham, J. P. (2016). Linear dynamical neural population models through nonlinear embeddings. In Advances in Neural Information Processing Systems. New York: Curran Associates.

    Google Scholar 

  • Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (2004). Bayesian data analysis (2nd ed.). Boca Raton, FL: Chapman & Hall/CRC Press.

    Google Scholar 

  • Gershman, S., & Blei, D. M. (2012). A tutorial on Bayesian nonparametric models. Journal of Mathematical Psychology, 56, 1–12.

    Google Scholar 

  • Ghahramani, Z., & Jordan, M. I. (1997). Factorial hidden Markov models. Machine Learning, 29(2), 245–273.

    Google Scholar 

  • Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. Cambridge, MA: MIT Press.

    Google Scholar 

  • Grosmark, A. D., & Buzsaki, G. (2016). Diversity in neural firing dynamics supports both rigid and learned hippocampal sequences. Science, 351, 1440–1443.

    Google Scholar 

  • Guédon, Y. (2003). Estimating hidden semi-Markov chains from discrete sequences. Journal of Computational and Graphical Statistics, 12, 604–639.

    Google Scholar 

  • Haggerty, D. C., & Ji, D. (2015a). Activities of visual cortical and hippocampal neurons co-fluctuate in freely-moving rats during spatial behavior. eLife, 4, e08902.

    Google Scholar 

  • Haggerty, D. C., & Ji, D. (2015b). Coordinated sequence replays between the visual cortex and hippocampus. In M. Matsuno (Ed.), Analysis and modeling of coordinated multi-neuronal activity (pp. 183–206). New York: Springer.

    Google Scholar 

  • Hu, S., Zhang, Q., Wang, J., & Chen, Z. (2017). A real-time rodent neural interface for deciphering acute pain signals from neuronal ensemble spike activity. In Proceedings of the 51st Asilomar Conference on Signals, Systems and Computers.

    Google Scholar 

  • Hu, S., Zhang, Q., Wang, J., & Chen, Z. (2018). Real-time particle filtering and smoothing algorithms for detecting abrupt changes in neural ensemble spike activity. Journal of Neurophysiology, in press.

    Google Scholar 

  • Ji, D., & Wilson, M. A. (2007). Coordinated memory replay in the visual cortex and hippocampus during sleep. Nature Neuroscience, 10, 100–107.

    Google Scholar 

  • Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., & Saul, L. K. (1999). An introduction to variational methods for graphical models. Machine Learning, 37, 183–233.

    Google Scholar 

  • Jordan, M. I., & Sejnowski, T. J. (Eds.). (2001). Graphical models: Foundations of neural computation. Cambridge, MA: MIT Press.

    Google Scholar 

  • Kuo, C. C., & Yen, C. T. (2005). Comparison of anterior cingulate and primary somatosensory neuronal responses to noxious laser-heat stimuli in conscious, behaving rats. Journal of Neurophysiology, 94, 1825–1836.

    Google Scholar 

  • Kurihara, K., & Welling, M. (2009). Bayesian k-means as ‘maximization-expectation’ algorithm. Neural Computation, 21, 1145–1172.

    Google Scholar 

  • Latimer, K. L., Yates, J. L., Meister, M. L. R., Huk, A. C., & Pillow, J. W. (2015). Single-trial spike trains in parietal cortex reveal discrete steps during decision-making. Science, 349, 184–187.

    Google Scholar 

  • Lawhern, V., Wu, W., Hatsopoulos, N. G., & Paninski, L. (2010). Population decoding of motor cortical activity using a generalized linear model with hidden states. Journal of Neuroscience Methods, 189, 267–280.

    Google Scholar 

  • LeCun, Y., Bengio, Y., & Hinton, G. E. (2015). Deep learning. Nature, 521, 436–444.

    Google Scholar 

  • Lee, L.-M. (2011). High-order hidden Markov model and application to continuous mandarin digit recognition. Journal of Information Science and Engineering, 27(13), 1919–1930.

    Google Scholar 

  • Linderman, S., Johnson, M. J., Wilson, M. A., & Chen, Z. (2016). A Bayesian nonparametric approach for uncovering rat hippocampal population codes during spatial navigation. Journal of Neuroscience Methods, 263, 36–47.

    Google Scholar 

  • Liu, S., Grosmark, A. D., & Chen, Z. (2018). Methods for assessment of memory reactivation. Neural Computation, to appear.

    Google Scholar 

  • Macke, J. H., Buesing, L., Cunningham, J. P., Yu, B. M., Shenoy, K. V., & Sahani, M. (2012). Empirical models of spiking in neural populations. In Advances in neural information processing systems (Vol. 24). New York: Curran Associates.

    Google Scholar 

  • Michaels, J. A., Dann, B., & Scherberger, H. (2016). Neural population dynamics during reaching are better explained by a dynamical system than representational tuning. PLoS Computational Biology, 12(11), e1005175.

    Google Scholar 

  • Müller, P., Quintana, F. A., Jara, A., & Hanson, T. (2015). Bayesian nonparametric data analysis. Cham: Springer.

    Google Scholar 

  • O’Keefe, J., & Dostrovsky, J. (1971). The hippocampus as a spatial map: preliminary evidence from unit activity in the freely-moving rat. Brain Research, 34(1), 171–175.

    Google Scholar 

  • O’Keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map. London: Oxford University Press.

    Google Scholar 

  • Omigbodun, A., Doyle, W. K., Devinsky, O., & Gilja, V. (2016). Hidden-Markov factor analysis as a spatiotemporal model for electrocorticography. In Proceedings of IEEE Engineering in Medicine and Biology Conference (pp. 1632–1635).

    Google Scholar 

  • Pachitariu, M., Petreska, B., & Sahani, M. (2013). Recurrent linear models of simultaneously-recorded neural populations. In L. Bottou, C. J. C. Burges, M. Welling, Z. Ghahramani & K. Q. Weinberger (Eds.), Advances in neural information processing systems (Vol. 26). New York: Curran Associates.

    Google Scholar 

  • Pawitan, Y. (2001). In all likelihood: Statistical modeling and inference using likelihood. Oxford: Clarendon Press.

    Google Scholar 

  • Penny, W., Ghahramani, Z., & Friston, K. (2005). Bilinear dynamical systems. Philosophical Transactions of Royal Society of London B: Biological Sciences, 360, 983–993.

    Google Scholar 

  • Rivkind, A., & Barak, O. (2017). Local dynamics in trained recurrent neural networks. Physics Review Letter, 118, 258101.

    Google Scholar 

  • Robert, C. P. (2007). The Bayesian choice: From decision-theoretic foundations to computational implementation (2nd ed.). Berlin: Springer.

    Google Scholar 

  • Santhanam, G., Yu, B. M., Gija, V., Ryu, S. I., Afshar, A., Sahani, M., et al. (2009). Factor-analysis methods for higher-performance neural prostheses. Journal of Neurophysiology, 102(2), 1315–1330.

    Google Scholar 

  • Saul, L. K., & Jordan, M. I. (1999). Mixed memory Markov models: Decomposing complex stochastic processes as mixtures of simpler ones. Machine Learning, 37, 75–86.

    Google Scholar 

  • Saul, L. K., & Rahim, M. G. (2000). Markov processes on curves. Machine Learning, 41, 345–363.

    Google Scholar 

  • Smith, A. C., & Brown, E. N. (2003). Estimating a state-space model from point process observations. Neural Computation, 15(5), 965–991.

    Google Scholar 

  • Stevenson, I. H. (2016). Flexible models for spike count data with both over- and under-dispersion. Journal of Computational Neuroscience, 41, 29–43.

    Google Scholar 

  • Székely, G. J., & Rizzo, M. L. (2009). Brownian distance covariance. Annals of Applied Statistics, 3/4, 1233–1303.

    Google Scholar 

  • Teh, Y. W., Jordan, M. I., Beal, M. J., & Blei, D. M. (2006). Hierarchical Dirichlet processes. Journal of American Statistical Association, 101, 1566–1581.

    Article  MathSciNet  Google Scholar 

  • Vierck, C. J., Whitsel, B. L., Favorov, O. V., Brown, A. W., & Tommerdahl, M. (2013). Role of primary somatosensory cortex in the coding of pains. Pain, 154, 334–344.

    Article  Google Scholar 

  • Vogelstein, J., Packer, A., Machado, T. A., Sippy, T., Babadi, B., Yuste, R., et al. (2010). Fast nonnegative deconvolution for spike train inference from population calcium imaging. Journal of Neurophysiology, 104, 3691–3704.

    Article  Google Scholar 

  • Vogelstein, J., Watson, B., Packer, A., Yuste, R., Jedynak, B., & Paninski, L. (2009). Spike inference from calcium imaging using sequential Monte Carlo methods. Biophysical Journal, 97(2), 636–655.

    Article  Google Scholar 

  • Wagner, T. D., Atlas, L. Y., Lindquist, M. A., Roy, M., Woo, C.-W., & Kross, E. (2013). An fMRI-based neurologic signature of physical pain. New England Journal of Medicine, 368, 1388–1397.

    Article  Google Scholar 

  • Whiteway, M. R., & Butts, D. A. (2017). Revealing unobserved factors underlying cortical activity with a rectified latent variable model applied to neural population recordings. Journal of Neurophysiology, 117, 919–936.

    Article  Google Scholar 

  • Wood, F., & Black, M. J. (2008). A nonparametric Bayesian alternative to spike sorting. Journal of Neuroscience Methods, 173(1), 1–12.

    Article  Google Scholar 

  • Wu, X., & Foster, D. (2014). Hippocampal replay captures the unique topological structure of a novel environment. Journal of Neuroscience, 34, 6459–6469.

    Article  Google Scholar 

  • Wu, W., Chen, Z., Gao, S., & Brown, E. N. (2011). A hierarchical Bayesian approach for learning sparse spatio-temporal decompositions of multichannel EEG. Neuroimage, 56(4), 1929–1945.

    Article  Google Scholar 

  • Wu, W., Kulkarni, J. E., Hatsopoulos, N. G., & Paninski, L. (2009). Neural decoding of hand motion using a linear state-space model with hidden states. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 17, 370–378.

    Article  Google Scholar 

  • Wu, W., Nagarajan, S., & Chen, Z. (2016). Bayesian machine learning: EEG/MEG signal processing measurements. IEEE Signal Processing Magazine, 33(1), 14–36.

    Article  Google Scholar 

  • Wu, W., & Srivastava, A. (2011). An information-geometric framework for statistical inferences in the neural spike train space. Journal of Computational Neuroscience, 31, 725–748.

    Article  MathSciNet  Google Scholar 

  • Yu, B. M., Cunningham, J. P., Santhanam, G., Ryu, S. I., Shenoy, K. V., & Sahani, M. (2009). Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population activity. Journal of Neurophysiology, 102(1), 614–635.

    Article  Google Scholar 

  • Yu, B. M., Kemere, C., Santhanam, G., Ryu, S. I., Meng, T. H., Sahani, M., et al. (2007). Mixture of trajectory models for neural decoding of goal-directed movements. Journal of Neurophysiology, 97, 3763–3780.

    Article  Google Scholar 

  • Yu, S.-Z. (2010). Hidden semi-Markov models. Artificial Intelligence, 174(2), 215–243.

    Article  MathSciNet  Google Scholar 

  • Zhang, Y., Wang, N., Wang, J.-Y., Chang, J.-Y., Woodward, D. J., & Luo, F. (2011). Ensemble encoding of nociceptive stimulus intensity in the rat medial and lateral pain systems. Molecular Pain, 7, 64.

    Article  Google Scholar 

  • Zhao, Y., & Park, I. M. (2017). Variational latent Gaussian process for recovering single-trial dynamics from population spike trains. Neural Computation, 29, 1293–1316.

    Article  Google Scholar 

  • Zhou, F., De la Torre, F., & Hodgins, J. K. (2013). Hierarchical aligned cluster analysis for temporal clustering of human motion. IEEE Transactions Pattern Analysis and Machine Intelligence, 35(3), 582–596.

    Article  Google Scholar 

Download references

Acknowledgements

I would like to thank Emery N. Brown for the intellectual inspiration during my postdoctoral career and all coauthors who have contributed to previously published work. I also thank S.L. Hu and S.Z. Liu for assistance in preparing some figures. Reproduction of some copyrighted materials is granted from publishers. The work was partially supported by an NSF-CRCNS award IIS-1307645 from the US National Science Foundation and an NIH-CRCNS award R01-NS100065 from the NINDS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhe Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Chen, Z. (2018). Latent Variable Modeling of Neural Population Dynamics. In: Chen, Z., Sarma, S.V. (eds) Dynamic Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-319-71976-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71976-4_3

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71975-7

  • Online ISBN: 978-3-319-71976-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics