Skip to main content

Inferring Neuronal Network Mechanisms Underlying Anesthesia-Induced Oscillations Using Mathematical Models

  • Chapter
Dynamic Neuroscience
  • 1534 Accesses

Abstract

Modern anesthetics have been in use since the mid-nineteenth century, yet their mechanism of action on the level of neuronal systems is largely unknown. Anesthetics induce widespread and stereotypic changes in oscillatory patterns in EEG suggesting they operate on the scale of neuronal circuits to produce the anesthetic state. Details of anesthetic-induced alterations to neuronal circuits have only begun to be investigated and one of the main tools used to elucidate these changes is mathematical models. Here we show how biophysically constrained mathematical models help us infer the cellular and network mechanisms underlying the generation of large scale oscillatory behavior. The physiology of both cortical and subcortical regions and the specific targets of various anesthetics inform the network topology that is capable of generating rhythmic activity in anesthetized states. Models not only predict the networks underlying anesthesia-induced oscillations but also guide experiments to further understand the role of these oscillations in the behavioral states that accompany anesthesia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akeju, O., Westover, M. B., Pavone, K. J., Sampson, A. L., Hartnack, K. E., Brown, E. N., et al. (2014). Effects of sevoflurane and propofol on frontal electroencephalogram power and coherence. Anesthesiology, 121(5), 990–998.

    Article  Google Scholar 

  • Akeju, O., Song, A. H., Hamilos, A. E., Pavone, K. J., Flores, F. J., Brown, E. N., et al. (2016). Electroencephalogram signatures of ketamine anesthesia-induced unconsciousness. Clinical Neurophysiology, 127(6), 2414–2422.

    Article  Google Scholar 

  • Alvina, K., Ellis-Davies, G., & Khodakhah, K. (2010). T-type calcium channels mediate rebound firing in intact deep cerebellar neurons. Neuroscience, 158(2), 635–641.

    Article  Google Scholar 

  • Ascoli, G. A., Gasparini, S., Medinilla, V., & Migliore, M. (2010). Local control of postinhibitory rebound spiking in CA1 pyramidal neuron dendrites. Journal of Neuroscience, 30(18), 6434–6442.

    Article  Google Scholar 

  • Börgers, C., (Ed.) (2017). An introduction to modeling neuronal dynamics. Cham: Springer.

    MATH  Google Scholar 

  • Cannon, J., McCarthy, M. M., Lee, S., Lee, J., Borgers, C., Whittington, M. A., et al. (2014). Neurosystems: Brain rhythms and cognitive processing. European Journal of Neuroscience, 39(5), 705–719.

    Article  Google Scholar 

  • Cardin, J. A., Carlén, M., Meletis, K., Knoblich, U., Zhang, F., Deisseroth, K., et al. (2009). Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature, 459, 663–667.

    Article  Google Scholar 

  • Ching, S., & Brown, E. N. (2014). Modeling the dynamical effects of anesthesia on brain circuits. Current Opinion in Neurobiology, 25, 116–122.

    Article  Google Scholar 

  • Ching, S., Cimenser, A., Purdon, P. L., Brown, E. N., & Kopell, N. J. (2010). Thalamocortical model for a propofol-induced alpha-rhythm associated with loss of consciousness. Proceedings of National Academy of Sciences USA, 107, 22665–22670.

    Google Scholar 

  • Destexhe, A., Bal, T., McCormick, D. A., & Sejnowski, T. J. (1996). Ionic mechanisms underlying synchronized oscillations and propagating waves in a model of ferret thalamic slices. Journal of Neurophysiology, 76(3), 2049–2070.

    Article  Google Scholar 

  • Gugino, L. D., Chabot, R. J., Prichep, L. S., John, E. R., Formanek, V., & Aglio, L. S. (2001). Quantitative EEG changes associated with loss and return of consciousness in healthy adult volunteers anaesthetized with propofol or sevoflurane. British Journal of Anaesthesia, 87(3), 421–428.

    Article  Google Scholar 

  • Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology, 117(4), 500–544.

    Article  Google Scholar 

  • Hughes, S. W., Lorincz, M. L., Cope, D. W., Blethyn, K. L., Kékesi, K. A., Parri, H. R., et al. (2004). Synchronized oscillations at alpha and theta frequencies in the lateral geniculate nucleus. Neuron, 42(2), 253–268.

    Article  Google Scholar 

  • Izhikevich, E. M., ed. (2007). Dynamical systems in neuroscience: The geometry of excitability and bursting. Cambridge: MIT Press.

    Google Scholar 

  • Kitamura, A., Marszalec, W., Yeh, J. Z., & Narahashi, T. (2003). Effects of halothane and propofol on excitatory and inhibitory synaptic transmission in rat cortical neurons. Journal of Pharmacology Experimental Theory, 304(1), 162–171.

    Article  Google Scholar 

  • Koch, C., & Segev, I., (Eds.) (1998). Methods in neuronal modeling: From Ions to networks. Cambridge: MIT Press.

    Google Scholar 

  • Lorincz, M. L., Kékesi, K. A., Juhász, G., Crunelli, V., & Hughes, S. W. (2009). Temporal framing of thalamic relay-mode firing by phasic inhibition during the alpha rhythm. Neuron, 63(5), 683–696.

    Article  Google Scholar 

  • Mainen, Z. F., & Sejnowski, T. J. (1996). Influence of dendritic structure on firing pattern in model neocortical neurons. Nature, 382, 363–366.

    Article  Google Scholar 

  • McCarthy, M. M., & Kopell, N. (2012). The effect of propofol anesthesia on rebound spiking. SIAM Journal on Applied Dynamical Systems, 11(4), 1674–1697.

    Article  Google Scholar 

  • McCarthy, M. M., Brown, E. N., & Kopell, N. (2008). Potential network mechanisms mediating electroencephalographic beta rhythm changes during propofol-induced paradoxical excitation. Journal of Neuroscience, 28, 13488–13504.

    Article  Google Scholar 

  • McCarthy, M. M., Moore-Kochlacs, C., Gu, X., Boyden, E. S., Han, X., et al. (2011). Striatal origin of the pathologic beta oscillations in Parkinson’s disease. Proceedings of National Academy of Sciences USA, 108, 11620–11625.

    Google Scholar 

  • Nunez, P., & Srinivasan, R. (2006). Electric fields of the brain, the neurophysics of EEG (2nd ed.). Oxford: Oxford University Press.

    Book  Google Scholar 

  • Olufsen, M. S., Whittington, M. A., Camperi, M., & Kopell, N. (2003). New roles for the gamma rhythm: Population tuning and preprocessing for the beta rhythm. Journal of Computational Neuroscience, 14, 33–54.

    Article  Google Scholar 

  • Segel, L. A., & Edelstein-Keshet, L. (2013). A primer on mathematical models in biology. Philadelphia, PA: Society for Industrial and Applied Mathematics.

    Book  Google Scholar 

  • Szmolyan, P., & Wechselberger, M. (2001). Canards in R3. Journal of Differential Equations, 177(2), 419–453.

    Article  MathSciNet  Google Scholar 

  • Traub, R. D., Contreras, D., Cunningham, M. O., Murray, H., LeBeau, F. E., Roopun, A., et al. (2005). Single-column thalamocortical network model exhibiting gamma oscillations, sleep spindles, and epileptogenic bursts. Journal of Neurophysiology, 93, 2194–2232.

    Article  Google Scholar 

  • Vijayan, S., & Kopell, N. J. (2012). Thalamic model of awake alpha oscillations and implications for stimulus processing. Proceedings of National Academy of Sciences USA, 109, 18553–18558.

    Google Scholar 

  • Vijayan, S., Ching, S., Purdon, P. L., Brown, E. N., & Kopell, N. J. (2013). Thalamocortical mechanisms for the anteriorization of alpha rhythms during propofol-induced unconsciousness. Journal of Neuroscience, 33, 11070–11075.

    Article  Google Scholar 

  • Wilson, H. R., & Cowan, J. D. (1972). Excitatory and inhibitory interactions in localized populations. Biophysical Journal, 12(1), 1–24.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujith Vijayan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Vijayan, S., McCarthy, M. (2018). Inferring Neuronal Network Mechanisms Underlying Anesthesia-Induced Oscillations Using Mathematical Models. In: Chen, Z., Sarma, S.V. (eds) Dynamic Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-319-71976-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71976-4_12

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71975-7

  • Online ISBN: 978-3-319-71976-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics