Advertisement

Stress and Implantation Failure

  • Jeffrey L. Deaton
  • Bonnie Patel
  • Erika Johnston-MacAnanny
  • Jie Yu
  • Shannon D. Whirledge
  • Alexandra Wilson
  • J. David Wininger
  • Yimin Shu
  • Robert N. Taylor
  • Sarah L. Berga
Chapter

Abstract

The cornerstone of female reproduction is the hypothalamic-pituitary-ovarian (HPO) axis. This term is incomplete in that it omits reference to the uterus and endometrium, which are clearly critical to the most important step in reproduction, namely, implantation. Implantation requires that the endometrium become receptive to a healthy blastocyst. Thus, folliculogenesis must result not only in ovulation but also in the secretion of estradiol and progesterone in a pattern that prepares the endometrium for implantation. While implantation failure can be defined as absent hCG production after ovulation that is signaled by menstrual bleeding, the definition also encompasses transient hCG production that is not sustained, which is often called “chemical” pregnancy.

Stress has been implicated as a cause of implantation failure. Putative mechanisms by which stress could impair endometrial development and implantation include:
  1. 1.

    Alteration of the HPO axis resulting in inappropriate temporal or quantitative exposure of the endometrium to estradiol and progesterone;

     
  2. 2.

    Exposure of the endometrium to the myriad of endocrine signals that accompany stress including elevated glucocorticoids, reduced thyroxine, and alterations in other metabolic factors;

     
  3. 3.

    Stress-induced obesity that results in inappropriate exposure to metabolic factors such as glucose and insulin that alter both embryo health and endometrial development;

     
  4. 4.

    Exposure of embryos to laboratory stressors that alter embryogenesis and trophectoderm development We review these mechanisms in greater detail in the following sections.

     

Keywords

Epigenetics Endometrial receptivity Functional hypothalamic hypogonadism Gametogenesis Glucocorticoids GnRH Kisspeptin Methylation 

Abbreviations

ACTH

Adrenocorticotropic hormone

ART

Assisted reproductive technology

BMI

Body mass index

CBT

Cognitive behavior therapy

CNS

Central nervous system

CRH

Corticotropin-releasing hormone

DNMT

DNA methyltransferase

FHA

Functional hypothalamic amenorrhea

FSH

Follicle-stimulating hormone

GABA

Gamma-aminobutyric acid

GH

Growth hormone

GnIH

Gonadotropin-inhibitory hormone

hCG

Human chorionic gonadotropin

HPA axis

Hypothalamic-pituitary-adrenal axis

HPO axis

Hypothalamic-pituitary-ovarian axis

IL

Interleukin

IVF

In vitro fertilization

IVF-ET

In vitro fertilization-embryo transfer

KNDy neurons

Kisspeptin-neurokinin B-dynorphin neurons

NMP

Nucleoplasmin

NPY

Neuropeptide Y

OS

Oxidative stress

POMC-related peptides

Pro-opiomelanocortin-related peptides

PRL

Prolactin

RCT

Randomized controlled trial

RFRP3

RF-amide-related peptide-3

ROS

Reactive oxygen species

TNF

Tumor necrosis factor

TPO

Thyroid peroxidase antibody

TSH

Thyroid-stimulating hormone

VOC

Volatile organic compound

References

  1. 1.
    Berga SL, Mortola JF, Yen S. Amplification of nocturnal melatonin secretion in women with functional hypothalamic amenorrhea. J Clin Endocrinol Metab. 1988;66(1):242–4.PubMedCrossRefGoogle Scholar
  2. 2.
    Berga SL, Mortola JF, Girton L, Suh B, Laughlin G, Pham P, Yen SS. Neuroendocrine aberrations in women with functional hypothalamic amenorrhea. J Clin Endocrinol Metab. 1989;68(2):301–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Liu JH. Hypothalamic amenorrhea: clinical perspectives, pathophysiology, and management. Am J Obstet Gynecol. 1990;163:1732–6.PubMedCrossRefGoogle Scholar
  4. 4.
    Berga SL. Stress and reproduction: a tale of false dichotomy? Endocrinology. 2008;149(3):867–8.  https://doi.org/10.1210/en.2008-0004.PubMedCrossRefGoogle Scholar
  5. 5.
    Clarke IJ. Control of GnRH secretion. J Reprod Fertil Suppl. 1987;34:1–8.PubMedGoogle Scholar
  6. 6.
    Prevot V. GnRH neurons directly listen to the periphery. Endocrinology. 2011;152(10):3589–91.  https://doi.org/10.1210/en.2011-1544.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Prevot V. Glial-neuronal-endothelial interactions are involved in the control of GnRH secretion. J Neuroendocrinol. 2002;14(3):247–55.PubMedCrossRefGoogle Scholar
  8. 8.
    Zsarnovszky A, Horvath TL, Garcia-Segura LM, Horvath B, Naftolin F. Oestrogen-induced changes in the synaptology of the monkey (Cercopithecus aethiops) arcuate nucleus during gonadotropin feedback. J Neuroendocrinol. 2001;13:22–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Navarro VM, Kaiser UB. Metabolic influences on neuroendocrine regulation of reproduction. Curr Opin Endocrinol Diabetes Obes. 2013;20(4):335–41.  https://doi.org/10.1097/MED.0b013e32836318ce.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Funes S, Hedrick JA, Vassileva G, Markowitz L, Abbondanzo S, Golovko A, Yang S, Monsma FJ, Gustafson EL. The KiSS-1 receptor GPR54 is essential for the development of the murine reproductive system. Biochem Biophys Res Commun. 2003;312(4):1357–63.PubMedCrossRefGoogle Scholar
  11. 11.
    Roa J, Tena-Sempere M. KiSS-1 system and reproduction: comparative aspects and roles in the control of female gonadotropic axis in mammals. Gen Comp Endocrinol. 2007;153(1-3):132–40.PubMedCrossRefGoogle Scholar
  12. 12.
    Sills ES, Walsh AP. The GPR54-Kisspeptin complex in reproductive biology: neuroendocrine significance and implications for ovulation induction and contraception. Neuro Endocrinol Lett. 2008;29(6):846–51.PubMedGoogle Scholar
  13. 13.
    Berga S, Naftolin F. Neuroendocrine control of ovulation. Gynecol Endocrinol. 2012;28(Suppl 1):9–13.PubMedCrossRefGoogle Scholar
  14. 14.
    Filicori M, Santoro N, Merriam GR, Crowley WF. Characterization of the physiological pattern of episodic gonadotropin secretion throughout the human menstrual cycle. J Clin Endocrinol Metab. 1986;62:1136–44.PubMedCrossRefGoogle Scholar
  15. 15.
    Brann DW, Mahesh VB. Excitatory amino acids: function and significance in reproduction and neuroendocrine regulation. Front Neuroendocrinol. 1994;15:3.PubMedCrossRefGoogle Scholar
  16. 16.
    Goodman RL, Lehman MN, Smith JT, Coolen LM, de Oliveira CV, Jafarzadehshirazi MR, Pereira A, Iqbal J, Caraty A, Ciofi P, et al. Kisspeptin neurons in the arcuate nucleus of the ewe express both dynorphin A and neurokinin B. Endocrinology. 2007;148(12):5752–60.PubMedCrossRefGoogle Scholar
  17. 17.
    Rance NE, Krajewski SJ, Smith MA, Cholanian M, Dacks PA. Neurokinin B and the hypothalamic regulation of reproduction. Brain Res. 2010;1364(116–28.CrossRefGoogle Scholar
  18. 18.
    Gordon CM. Clinical practice. Functional hypothalamic amenorrhea. N Engl J Med. 2010;363(4):365–71.PubMedCrossRefGoogle Scholar
  19. 19.
    Michopoulos V, Mancini F, Loucks TL, Berga SL. Neuroendocrine recovery initiated by cognitive behavioral therapy in women with functional hypothalamic amenorrhea: a randomized, controlled trial. Fertil Steril. 2013;99(7):2084–91.e1.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Licinio J, Negrão AB, Mantzoros C, Kaklamani V, Wong ML, Bongiorno PB, Mulla A, Cearnal L, Veldhuis JD, Flier JS, McCann SM, Gold PW. Synchronicity of frequently sampled, 24-h concentrations of circulating leptin, luteinizing hormone, and estradiol in healthy women. Proc Natl Acad Sci U S A. 1998;95(5):2541–6.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Barreiro ML, Tena-Sempere M. Ghrelin and reproduction: a novel signal linking energy status and fertility? Mol Cell Endocrinol. 2004;226(1-2):1–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Schneider LF, Warren MP. Functional hypothalamic amenorrhea is associated with elevated ghrelin and disordered eating. Fertil Steril. 2006;86(6):1744–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Tolle V, Kadem M, Bluet-Pajot MT, Frere D, Foulon C, Bossu C, Dardennes R, Mounier C, Zizzari P, Lang F, Epelbaum J, Estour B. Balance in ghrelin and leptin plasma levels in anorexia nervosa patients and constitutionally thin women. J Clin Endocrinol Metab. 2003;88(1):109–16.PubMedCrossRefGoogle Scholar
  24. 24.
    De Souza MJ, Leidy HJ, O'Donnell E, Lasley B, Williams NI. Fasting ghrelin levels in physically active women: relationship with menstrual disturbances and metabolic hormones. J Clin Endocrinol Metab. 2004;89(7):3536–42.PubMedCrossRefGoogle Scholar
  25. 25.
    Miljic D, Pekic S, Djurovic M, Doknic M, Milic N, Casanueva FF, Ghatei M, Popovic V. Ghrelin has partial or no effect on appetite, growth hormone, prolactin, and cortisol release in patients with anorexia nervosa. J Clin Endocrinol Metab. 2006;91(4):1491–5.PubMedCrossRefGoogle Scholar
  26. 26.
    Pedrazzini T, Pralong F, Grouzmann E. Neuropeptide Y: the universal soldier. Cell Mol Life Sci. 2003;60(2):350–77.PubMedCrossRefGoogle Scholar
  27. 27.
    Kalra SP, Crowley WR. Neuropeptide Y: a novel neuroendocrine peptide in the control of pituitary hormone secretion, and its relation to luteinizing hormone. Front Neuroendocrinol. 1992;13(1):1–46.PubMedGoogle Scholar
  28. 28.
    Meczekalski B, Genazzani AR, Genazzani AD, Warenik-Szymankiewicz A, Luisi M. Clinical evaluation of patients with weight loss-related amenorrhea: neuropeptide Y and luteinizing hormone pulsatility. Gynecol Endocrinol. 2006;22(5):239–43.PubMedCrossRefGoogle Scholar
  29. 29.
    Brundu B, Loucks TL, Adler LJ, Cameron JL, Berga SL. Increased cortisol in the cerebrospinal fluid of women with functional hypothalamic amenorrhea. J Clin Endocrinol Metab. 2006;91:1561–5.PubMedCrossRefGoogle Scholar
  30. 30.
    Erichsen MM, Husebye ES, Michelsen TM, Dahl AA, Løvås K. Sexuality and fertility in women with Addison’s disease. J Clin Endocrinol Metab. 2010;95(9):4354–60.PubMedCrossRefGoogle Scholar
  31. 31.
    Berga SL, Daniels TL, Giles DE. Women with functional hypothalamic amenorrhea but not other forms of anovulation display amplified cortisol concentrations. Fertil Steril. 1997;67(6):1024–30.PubMedCrossRefGoogle Scholar
  32. 32.
    Michopoulos V, Embree M, Reding K, Sanchez MM, Toufexis D, Votaw JR, Voll RJ, Goodman MM, Rivier J, Wilson ME, Berga SL. CRH receptor antagonism reverses the effect of social subordination upon central GABAA receptor binding in estradiol-treated ovariectomized female rhesus monkeys. Neuroscience. 2013;250:300–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Martin C, Navarro VM, Simavli S, Vong L, Carroll RS, Lowell BB, Kaiser UB. Leptin-responsive GABAergic neurons regulate fertility through pathways that result in reduced kisspeptinergic tone. J Neurosci. 2014;34(17):6047–56.  https://doi.org/10.1523/JNEUROSCI.3003-13.2014.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Takumi K, Iijima N, Higo S, Ozawa H. Immunohistochemical analysis of the colocalization of corticotropin-releasing hormone receptor and glucocorticoid receptor in kisspeptin neurons in the hypothalamus of female rats. Neurosci Lett. 2012;531(1):40–5.PubMedCrossRefGoogle Scholar
  35. 35.
    Luo E, Stephens SB, Chaing S, Munaganuru N, Kauffman AS, Breen KM. Corticosterone blocks ovarian cyclicity and the LH surge via decreased kisspeptin neuron activation in female mice. Endocrinology. 2016;157(3):1187–99.PubMedCrossRefGoogle Scholar
  36. 36.
    Ubuka T, Morgan K, Pawson AJ, Osugi T, Chowdhury VS, Minakata H, Tsutsui K, Millar RP, Bentley GE. Identification of human GnIH homologs, RFRP-1 and RFRP-3, and the cognate receptor, GPR147 in the human hypothalamic pituitary axis. PLoS One. 2009;4(12):e8400.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Clarke IJ, Bartolini D, Conductier G, Henry BA. Stress increases gonadotropin inhibitory hormone cell activity and input to GnRH cells in ewes. Endocrinology. 2016;157(11):4339–50.PubMedCrossRefGoogle Scholar
  38. 38.
    Kirby ED, Geraghty AC, Ubuka T, Bentley GE, Kaufer D. Stress increases putative gonadotropin inhibitory hormone and decreases luteinizing hormone in male rats. Proc Natl Acad Sci U S A. 2009;106(27):11324–9.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Liu JH, Patel B, Collins G. Central causes of amenorrhea. In: De Groot LJ, Chrousos G, Dungan K, Feingold KR, Grossman A, Hershman JM, Koch C, Korbonits M, McLachlan R, New M, Purnell J, Rebar R, Singer F, Vinik A, editors. Endotext [internet]. South Dartmouth: MDText.com, Inc.; 2000–2016.Google Scholar
  40. 40.
    Rivier C, Brownstein M, Spiess J, Rivier J, Vale W. In vivo corticotropin-releasing factor-induced secretion of adrenocorticotropin, beta-endorphin, and corticosterone. Endocrinology. 1982;110(1):272–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Ciechanowska M, Łapot M, Malewski T, Mateusiak K, Misztal T, Przekop F. Effects of corticotropin-releasing hormone and its antagonist on the gene expression of gonadotrophin-releasing hormone (GnRH) and GnRH receptor in the hypothalamus and anterior pituitary gland of follicular phase ewes. Reprod Fertil Dev. 2011;23(6):780–7.PubMedGoogle Scholar
  42. 42.
    Berga SL, Marcus MD, Loucks TL, Hlastala S, Ringham R, Krohn MA. Recovery of ovarian activity in women with functional hypothalamic amenorrhea (FHA) treated with cognitive behavior therapy (CBT). Fertil Steril. 2003;80:976–81.PubMedCrossRefGoogle Scholar
  43. 43.
    Zhao LH, Cui XZ, Yuan HJ, Liang B, Zheng LL, Liu YX, Luo MJ, Tan JH. Restraint stress inhibits mouse implantation: temporal window and the involvement of HB-EGF, estrogen and progesterone. PLoS One. 2013;8(11):e80472.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Sugino N. The role of oxygen radical-mediated signaling pathways in endometrial function. Placenta. 2007;28(Suppl A):S133–6.PubMedCrossRefGoogle Scholar
  45. 45.
    Taylor RN, Yu J, Torres PB, Schickedanz AC, Park JK, Mueller MD, Sidell N. Mechanistic and therapeutic implications of angiogenesis in endometriosis. Reprod Sci. 2009;16(2):140–6.PubMedCrossRefGoogle Scholar
  46. 46.
    Whirledge S, Cidlowski JA. Glucocorticoids and reproduction: traffic control on the road to reproduction. Trends Endocrinol Metab. 2017;28(6):399–415.PubMedCrossRefGoogle Scholar
  47. 47.
    Weiss G, Goldsmith LT, Taylor RN, Bellet D, Taylor HS. Inflammation in reproductive disorders. Reprod Sci. 2009;16(2):216–29.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Breen KM, Mellon PL. Influence of stress-induced intermediates on gonadotropin gene expression in gonadotrope cells. Mol Cell Endocrinol. 2014;385(1–2):71–7.PubMedCrossRefGoogle Scholar
  49. 49.
    Polak de Fried E, Blanco L, Lancuba S, Asch RH. Improvement of clinical pregnancy rate and implantation rate of in-vitro fertilization-embryo transfer patients by using methylprednisone. Hum Reprod. 1993;8(3):393–5.PubMedCrossRefGoogle Scholar
  50. 50.
    Moffitt D, Queenan JT Jr, Veeck LL, Schoolcraft W, Miller CE, Muasher SJ. Low-dose glucocorticoids after in vitro fertilization and embryo transfer have no significant effect on pregnancy rate. Fertil Steril. 1995;63(3):571–7.PubMedCrossRefGoogle Scholar
  51. 51.
    Mottla GL, Smotrich DB, Gindoff PR, Stillman RJ. Increasing clinical pregnancy rates after IVF/ET. Can immunosuppression help? J Reprod Med. 1996;41(12):889–91.PubMedGoogle Scholar
  52. 52.
    Kaye L, Bartels C, Bartolucci A, Engmann L, Nulsen J, Benadiva C. Old habits die hard: retrospective analysis of outcomes with use of corticosteroids and antibiotics before embryo transfer. Fertil Steril. 2017;107(6):1336–40.PubMedCrossRefGoogle Scholar
  53. 53.
    Whirledge S, Xu X, Cidlowski JA. Global gene expression analysis in human uterine epithelial cells defines new targets of glucocorticoid and estradiol antagonism. Biol Reprod. 2013;89(3):66.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Yu J, Berga SL, Johnston-MacAnanny EB, Sidell N, Bagchi IC, Bagchi MK, Taylor RN. Endometrial stromal decidualization responds reversibly to hormone stimulation and withdrawal. Endocrinology. 2016;157(6):2432–46.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Jungheim ES, Moley KH. Current knowledge of obesity’s effects in the pre- and periconceptional periods and avenues for future research. Am J Obstet Gynecol. 2010;203(6):525–30.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Chaffin CL, Latham KE, Mtango NR, Midic U, VandeVoort CA. Dietary sugar in healthy female primates perturbs oocyte maturation and in vitro preimplantation embryo development. Endocrinology. 2014;155(7):2688–95.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Arce M, Michopoulos V, Shepard KN, Ha QC, Wilson ME. Diet choice, cortisol reactivity, and emotional feeding in socially housed rhesus monkeys. Physiol Behav. 2010;101(4):446–55.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Moore CJ, Johnson ZP, Higgins M, Toufexis D, Wilson ME. Antagonism of corticotrophin-releasing factor type 1 receptors attenuates caloric intake of free feeding subordinate female rhesus monkeys in a rich dietary environment. J Neuroendocrinol. 2015;27(1):33–43.PubMedCrossRefGoogle Scholar
  59. 59.
    Michopoulos V, Toufexis D, Wilson ME. Social stress interacts with diet history to promote emotional feeding in females. Psychoneuroendocrinology. 2012;37(9):1479–90.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Depalo R, Garruti G, Totaro I, Panzarino M, Vacca MP, Giorgino F, Selvaggi LE. Oocyte morphological abnormalities in overweight women undergoing in vitro fertilization cycles. Gynecol Endocrinol. 2011;27(11):880–4.PubMedCrossRefGoogle Scholar
  61. 61.
    Waddington CH. The epigenotype. Endeavor. 1942;1:18–20.Google Scholar
  62. 62.
    Combelles CM, Carabatsos MJ, Kumar TR, et al. Hormonal control of somatic cell oocyte interactions during ovarian follicle development. Mol Reprod Dev. 2004;69:347–55.PubMedCrossRefGoogle Scholar
  63. 63.
    Matzuk MM, Burns KH, Viveiros MM, Eppig JJ. Intercellular communication in the mammalian ovary: oocytes carry the conversation. Science. 2002;296:2178–80.PubMedCrossRefGoogle Scholar
  64. 64.
    Gougeon A. Dynamics of follicular growth in the human: a model from preliminary results. Hum Reprod. 1986;1:81–7.PubMedCrossRefGoogle Scholar
  65. 65.
    Oktay K, Newton H, Mullen J, Gosden RG. Development of human primordial follicles to antral stages in SCID/hpg mice stimulated with follicle stimulating hormone. Hum Reprod. 1998;13:1133–8.PubMedCrossRefGoogle Scholar
  66. 66.
    Volarcik K, Sheean L, Goldfarb J, et al. The meiotic competence of in-vitro matured human oocytes is influenced by donor age: evidence that folliculogenesis is compromised in the reproductively aged ovary. Hum Reprod. 1998;13:154–60.PubMedCrossRefGoogle Scholar
  67. 67.
    Pozo J, Corral E, Pereda J. Subcellular structure of prenatal human ovary: mitochondrial distribution during meiotic prophase. J Submicrosc Cytol Pathol. 1990;22:601–7.PubMedGoogle Scholar
  68. 68.
    Ratnam S, Mertineit C, Ding F, et al. Dynamics of Dnmt1 methyltransferase expression and intracellular localization during oogenesis and preimplantation development. Dev Biol. 2002;245:304–14.PubMedCrossRefGoogle Scholar
  69. 69.
    Irving-Rogers RJ, van Wezel IL, Krupa M, Lavranos TC. Dynamics of the membrane granulosa during expansion of the ovarian follicular antrum. Mol Cell Endocrinol. 2001;171:41–8.CrossRefGoogle Scholar
  70. 70.
    Stastna J, Dvorak M, Pilka L. Electron microscopic and cytochemical study of the cortical cytoplasm in the preovulatory human oocyte. Z Mikrosk Anat Forsch. 1983;97:675–87.PubMedGoogle Scholar
  71. 71.
    Rankin T, Familari M, Lee E, et al. Mice homozygous for an insertional mutation in the ZP-3 gene lack a zona pellucida and are infertile. Development. 1996;122:2903–10.PubMedGoogle Scholar
  72. 72.
    Hsueh AJ, Billig H, Tsafriri A. Ovarian follicle atresia: a hormonally controlled apoptotic process. Endocr Rev. 1994;15:707–24.PubMedGoogle Scholar
  73. 73.
    Himelstein-Braw R, Byskov AG, Peters H, Faber M. Follicular atresia in the infant human ovary. J Reprod Fertil. 1976;46:55–9.PubMedCrossRefGoogle Scholar
  74. 74.
    Pru JK, Tilly JL. Programmed cell death in the ovary: Insights and future prospects using genetic technologies. Mol Endocrinol. 2001;15:845–53.PubMedCrossRefGoogle Scholar
  75. 75.
    Kondo H, Maruo T, Peng X, Mochizuki M. Immunological evidence for the expression of the Fas antigen in the infant and adult human ovary during follicular regression and atresia. J Clin Endocrinol Metab. 1996;81:2702–10.PubMedGoogle Scholar
  76. 76.
    Colledge W, Carlton MB, Udy GB, Evans MJ. Disruption of c-mos causes parthenogenetic development of unfertilized mouse eggs. Nature. 1994;370:65–8.PubMedCrossRefGoogle Scholar
  77. 77.
    Burns KH, Viveiros MM, Ren Y, et al. Roles of NMP2 in chromatin and nucleolar organization in oocytes and embryos. Science. 2003;300:633–6.PubMedCrossRefGoogle Scholar
  78. 78.
    Yuba-Kubo A, Kubo A, Hata M, Tsukita S. Gene knockout analysis of two gamma-tubulin isoforms in mice. Dev Biol. 2005;282:361–73.PubMedCrossRefGoogle Scholar
  79. 79.
    Law CM, Barker DJ, Osmond C, et al. Early growth and abdominal fatness in adult life. J Epidemiol Community Health. 1992;46:184–6.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Perera F, Herbstman J. Prenatal environmental exposures, epigenetics, and disease. Reprod Toxicol. 2011;31:363–73.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Elias SG, van Noord PA, Peeters PH, et al. The 1944-1945 Dutch famine and subsequent overall cancer incidence. Cancer Epidemiol Biomark Prev. 2005;14:1981–5.CrossRefGoogle Scholar
  82. 82.
    Roseboom TJ, van der Meulen JH, Ravelli AC, et al. Effects of prenatal exposure to the Dutch famine on adult disease in later life: an overview. Mol Cell Endocrinol. 2001;185:93–8.PubMedCrossRefGoogle Scholar
  83. 83.
    Kwong WY, Wild AE, Roberts P, et al. Maternal under nutrition during the preimplantation period of rat development causes blastocyst abnormalities and programming of postnatal hypertension. Development. 2000;127:4195–202.PubMedGoogle Scholar
  84. 84.
    van Engeland M, Weijenberg MP, et al. Effects of dietary folate and alcohol intake on promoter methylation in sporadic colorectal cancer: the Netherlands cohort study on diet and cancer. Cancer Res. 2003;63:3133–7.PubMedGoogle Scholar
  85. 85.
    Jungheim ES, Schon SB, Schulte MB, et al. IVF outcomes in obese donor oocyte recipients: a systemic review and meta-analysis. Hum Reprod. 2013;28:2720–7.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Weghofer A, Himaya E, Kushnir VA, et al. The impact of thyroid function and thyroid autoimmunity on embryo quality in women with low functional ovarian reserve: a case-control study. Reprod Biol Endocrinol. 2015;13:43.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Scoccia B, Demir H, Kang Y, et al. In vitro fertilization pregnancy rates in levothyroxine-treated women with hypothyroidism compared to women without thyroid dysfunction disorders. Thyroid. 2012;22:631–6.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Velkeniers B, Van Meerhaeghe A, Poppe K, et al. Levothyroxine treatment and pregnancy outcome in women with subclinical hypothyroidism undergoing assisted reproduction technologies: systematic review and meta-analysis of RCTs. Hum Reprod Update. 2013;19:251–8.PubMedCrossRefGoogle Scholar
  89. 89.
    Fumarola A, Grani G, Romanzi D, et al. Thyroid function in infertile patients undergoing assisted reproduction. Am J Reprod Immunol. 2013;70:336–41.PubMedCrossRefGoogle Scholar
  90. 90.
    Baker VL, Rone HM, Pasta DJ, et al. Correlation of thyroid stimulating hormone (TSH) level with pregnancy outcome in women undergoing in vitro fertilization. Am J Obstet Gynecol. 2006;194:1668–74.PubMedCrossRefGoogle Scholar
  91. 91.
    Assisted Reproductive National Data, Centers for Disease Control and Prevention, 2015.Google Scholar
  92. 92.
    National Vital Statistics Reports, Volume 66, Number 1, January 5, 2017.Google Scholar
  93. 93.
    Lazaraviciute G, Kauser M, Bhattacharya S, et al. A systematic review and meta-analysis of DNA methylation levels and imprinting disorders in children conceived by IVF/ICSI compared with children conceived spontaneously. Hum Reprod Update. 2014;20:840–52.PubMedCrossRefGoogle Scholar
  94. 94.
    Niemann H, Wrenzycki C. Alterations of expression of developmentally important genes in preimplantation bovine embryos by in vitro culture conditions: implications for subsequent development. Theriogenology. 2000;53:21–34.PubMedCrossRefGoogle Scholar
  95. 95.
    Khosla S, Dean W, Brown D, et al. Culture of preimplantation mouse embryos affects fetal development and the expression of imprinted genes. Biol Reprod. 2001;64:918–26.PubMedCrossRefGoogle Scholar
  96. 96.
    Rinaudo PF, Schultz RM. Effects of embryo culture on global pattern of gene expression in preimplantation mouse embryos. Reproduction. 2004;128:301–11.PubMedCrossRefGoogle Scholar
  97. 97.
    Lee ES, Fukui Y, Lee BC, et al. Promoting effect of amino acids added to a chemically defined medium on blastocyst formation and blastomere proliferation of bovine embryos cultured in vitro. Anim Reprod Sci. 2004;84:257–67.PubMedCrossRefGoogle Scholar
  98. 98.
    Sjoblom C, Roberts CT, Wikland M, Robertson SA. Granulocyte-macrophage colony stimulating factor alleviates adverse consequences of embryo culture on fetal growth trajectory and placental morphogenesis. Endocrinology. 2005;146:2142–53.PubMedCrossRefGoogle Scholar
  99. 99.
    Anderson CM, Lopez F, Zimmer A, Benoit JN. Placental insufficiency leads to developmental hypertension and mesenteric artery dysfunction in two generations of Sprague-Dawley rat offspring. Biol Reprod. 2006;74:538–44.PubMedCrossRefGoogle Scholar
  100. 100.
    Leese HJ. Quiet please, do not disturb: a hypothesis of embryo metabolism and viability. BioEssays. 2002;24:845–9.PubMedCrossRefGoogle Scholar
  101. 101.
    Fragouli E, Spath K, Alfarawati S, et al. Altered levels of mitochondrial DNA are associated with female age, aneuploidy, and provide an independent measure of embryonic implantation potential. PLoS Genet. 2015;11:e1005241.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Diez-Juan A, Rubio C, Marin C, et al. Mitochondrial DNA content as a viability score in human euploid embryos: less is better. Fertil Steril. 2015;104:534–41.PubMedCrossRefGoogle Scholar
  103. 103.
    Victor AR, Brake AJ, Tyndall BA, et al. Accurate quantitation of mitochondrial DNA reveals uniform levels in human blastocysts irrespective of ploidy, age, or implantation potential. Fertil Steril. 2016;107:34–42.PubMedCrossRefGoogle Scholar
  104. 104.
    Tatone C, Heizenrieder T, Emidio GD, et al. Evidence that carbonyl stress by methylglyoxal exposure induces DNA damage and spindle aberrations, affects mitochondrial integrity in mammalian oocytes and contributes to oocyte aging. Hum Reprod. 2011;26:1843–59.PubMedCrossRefGoogle Scholar
  105. 105.
    Rodgers AB, Morgan CP, Leu NA, Bale TL. Transgenerational epigenetic programming via sperm microRNA recapitulates effects of paternal stress. Proc Natl Acad Sci. 2015;112:44–9.CrossRefGoogle Scholar
  106. 106.
    Roth Z, Hansen PJ. Disruption of nuclear maturation and rearrangement of cytoskeletal elements in bovine oocytes exposed to heat shock during maturation. Reproduction. 2005;129:235–44.PubMedCrossRefGoogle Scholar
  107. 107.
    Seong KH, Li D, Shimizu H, et al. Inheritance of stress-induced, ATF-2-dependent epigenetic change. Cell Press. 2011;145:1049–61.Google Scholar
  108. 108.
    Tetsuka M, Takagi R, Ambo N, et al. Glucocorticoid metabolism in the bovine cumulus oocyte complex matured in vitro. Reproduction. 2016;151:73–82.PubMedCrossRefGoogle Scholar
  109. 109.
    Webb RJ, Sunak N, Wren L, Michael AE. Inactivation of glucocorticoids by 11-beta-hydroxysteroid dehydrogenase enzymes increases during the meiotic maturation of porcine oocytes. Reproduction. 2008;136:725–32.PubMedCrossRefGoogle Scholar
  110. 110.
    Hausmann MF, Longenecker AS, Marchetto NM, Juliano SA, Bowden RM. Embryonic exposure to corticosterone modifies the juvenile stress response, oxidative stress, and telomere length. Proc Biol Sci. 2012;279:1447–56.CrossRefGoogle Scholar
  111. 111.
    Nesan D, Vijayan MM. Role of glucocorticoid in developmental programming: evidence from zebrafish. Gen Comp Endocrinol. 2013;181:35–44.PubMedCrossRefGoogle Scholar
  112. 112.
    Bontekoe S, Mantikou E, van Wely M, Seshadri S, Repping S, Mastenbroek S. Low oxygen concentrations for embryo culture in assisted reproductive technologies. Cochrane Database Syst Rev. 2012;7:CD008950.Google Scholar
  113. 113.
    Gardner DK, Lane M. Culture of viable human blastocysts in defined sequential serum-free media. Hum Reprod. 1998;13(Supp 3):148–59. discussion 160PubMedCrossRefGoogle Scholar
  114. 114.
    Edwards LJ, Williams DA, Gardner DK. Intracellular pH of the mouse preimplantation embryo: amino acids act as buffers of intracellular pH. Hum Reprod. 1998;13:3441–8.PubMedCrossRefGoogle Scholar
  115. 115.
    Otsuki J, Nagai Y, Chiba K. Damage of embryo development caused by peroxidized mineral oil and its association with albumin in culture. Fertil Steril. 2009;91:1745–9.PubMedCrossRefGoogle Scholar
  116. 116.
    Pomeroy K, Reed M. The effect of light on embryos and embryo culture. J Reprod Stem Cell Biotechnol. 2013;3(2):46–54.CrossRefGoogle Scholar
  117. 117.
    Heitmann RJ, Hill MJ, James AN, Schimmel T, Segars JH, et al. Live births achieved via IVF are increased by improvements in air quality and laboratory environment. Reprod Biomed Online. 2015;31:364–71.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Jeffrey L. Deaton
    • 1
  • Bonnie Patel
    • 1
  • Erika Johnston-MacAnanny
    • 1
  • Jie Yu
    • 1
  • Shannon D. Whirledge
    • 2
  • Alexandra Wilson
    • 1
  • J. David Wininger
    • 1
  • Yimin Shu
    • 1
  • Robert N. Taylor
    • 1
  • Sarah L. Berga
    • 1
  1. 1.Department of Obstetrics and GynecologyWake Forest School of MedicineWinston-SalemUSA
  2. 2.Department of Obstetrics, Gynecology and Reproductive SciencesYale University School of MedicineNew HavenUSA

Personalised recommendations