The Genetics of Pregnancy Failure

  • Eric J. Forman
  • Nathan Treff
  • Rebekah S. Zimmerman


Genetic competence is an essential component of an embryo’s ability to implant and progress to a normal delivery. This chapter will assess the known genetic factors that contribute to early embryo failure to implant or to miscarry after implantation. Much of our knowledge has been accumulated through analysis of products of conception which reveals that aneuploidy, particularly trisomy, is the leading cause of early pregnancy failure. The role of translocations and single gene disorders will also be examined. With the advent and rapid application of assisted reproductive technologies, knowledge regarding the preimplantation embryo has rapidly increased. A vast amount of historical data points toward genetic abnormalities related to advancing oocyte age as the leading contributor to early pregnancy failure. The in vitro fertilization experience with preimplantation genetic screening using a variety of technologies will be critically examined. Finally, the limitations of these technologies as well as future areas of research to improve genetic selection of embryos for IVF will be reviewed.


Aneuploidy Translocation Single gene disorder Preimplantation genetic screening 


  1. 1.
    Boue J, Bou A, Lazar P. Retrospective and prospective epidemiological studies of 1500 karyotyped spontaneous human abortions. Teratology. 1975;12(1):11–26.CrossRefPubMedGoogle Scholar
  2. 2.
    Nussbaum RL, McInnes RR, Willard HF, Thompson MW, Hamosh A. Thompson & Thompson genetics in medicine. 7th ed. Philadelphia: Saunders/Elsevier; 2007. p. xi, 585pp.Google Scholar
  3. 3.
    Shen J, Wu W, Gao C, Ochin H, Qu D, Xie J, et al. Chromosomal copy number analysis on chorionic villus samples from early spontaneous miscarriages by high throughput genetic technology. Mol Cytogenet. 2016;9:7.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Maslow BS, Budinetz T, Sueldo C, Anspach E, Engmann L, Benadiva C, et al. Single-nucleotide polymorphism-microarray ploidy analysis of paraffin-embedded products of conception in recurrent pregnancy loss evaluations. Obstet Gynecol. 2015;126(1):175–81.CrossRefPubMedGoogle Scholar
  5. 5.
    Sahoo T, Dzidic N, Strecker MN, Commander S, Travis MK, Doherty C, et al. Comprehensive genetic analysis of pregnancy loss by chromosomal microarrays: outcomes, benefits, and challenges. Genet Med. 2017;19:83.CrossRefPubMedGoogle Scholar
  6. 6.
    Levy B, Sigurjonsson S, Pettersen B, Maisenbacher MK, Hall MP, Demko Z, et al. Genomic imbalance in products of conception: single-nucleotide polymorphism chromosomal microarray analysis. Obstet Gynecol. 2014;124(2 Pt 1):202–9.CrossRefPubMedGoogle Scholar
  7. 7.
    Neri G, Serra A, Campana M, Tedeschi B. Reproductive risks for translocation carriers: cytogenetic study and analysis of pregnancy outcome in 58 families. Am J Med Genet. 1983;16(4):535–61.CrossRefPubMedGoogle Scholar
  8. 8.
    Campana M, Serra A, Neri G. Role of chromosome aberrations in recurrent abortion: a study of 269 balanced translocations. Am J Med Genet. 1986;24(2):341–56.CrossRefPubMedGoogle Scholar
  9. 9.
    De Braekeleer M, Dao TN. Cytogenetic studies in couples experiencing repeated pregnancy losses. Hum Reprod. 1990;5(5):519–28.CrossRefPubMedGoogle Scholar
  10. 10.
    Jacobs PA, Browne C, Gregson N, Joyce C, White H. Estimates of the frequency of chromosome abnormalities detectable in unselected newborns using moderate levels of banding. J Med Genet. 1992;29(2):103–8.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Maeda T, Ohno M, Matsunobu A, Yoshihara K, Yabe N. A cytogenetic survey of 14,835 consecutive liveborns. Jinrui Idengaku Zasshi. 1991;36(1):117–29.CrossRefPubMedGoogle Scholar
  12. 12.
    Treff NR, Northrop LE, Kasabwala K, Su J, Levy B, Scott RT Jr. Single nucleotide polymorphism microarray-based concurrent screening of 24 chromosome aneuploidy and unbalanced translocations in preimplantation human embryos. Fertil Steril. 2010;95(5):1606–12.e1-2.CrossRefPubMedGoogle Scholar
  13. 13.
    Therman E, Susman B, Denniston C. The nonrandom participation of human acrocentric chromosomes in Robertsonian translocations. Ann Hum Genet. 1989;53(Pt 1):49–65.CrossRefPubMedGoogle Scholar
  14. 14.
    Fryns JP, Van Buggenhout G. Structural chromosome rearrangements in couples with recurrent fetal wastage. Eur J Obstet Gynecol Reprod Biol. 1998;81(2):171–6.CrossRefPubMedGoogle Scholar
  15. 15.
    Lazarin GA, Haque I, Evans EA, Goldberg JD. Smith-Lemli-Opitz syndrome carrier frequency and estimates of in utero mortality rates. Prenat Diagn. 2017;37:350.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Loffler J, Trojovsky A, Casati B, Kroisel PM, Utermann G. Homozygosity for the W151X stop mutation in the delta7-sterol reductase gene (DHCR7) causing a lethal form of Smith-Lemli-Opitz syndrome: retrospective molecular diagnosis. Am J Med Genet. 2000;95(2):174–7.CrossRefPubMedGoogle Scholar
  17. 17.
    Schollen E, Kjaergaard S, Legius E, Schwartz M, Matthijs G. Lack of Hardy-Weinberg equilibrium for the most prevalent PMM2 mutation in CDG-Ia (congenital disorders of glycosylation type Ia). Eur J Hum Genet. 2000;8(5):367–71.CrossRefPubMedGoogle Scholar
  18. 18.
    Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536(7616):285–91.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Sazegari A, Kalantar SM, Pashaiefar H, Mohtaram S, Honarvar N, Feizollahi Z, et al. The T657C polymorphism on the SYCP3 gene is associated with recurrent pregnancy loss. J Assist Reprod Genet. 2014;31(10):1377–81.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Eagles N, Sebire NJ, Short D, Savage PM, Seckl MJ, Fisher RA. Risk of recurrent molar pregnancies following complete and partial hydatidiform moles. Hum Reprod. 2015;30(9):2055–63.CrossRefPubMedGoogle Scholar
  21. 21.
    Shi X, Xie X, Jia Y, Li S. Maternal genetic polymorphisms and unexplained recurrent miscarriage: a systematic review and meta-analysis. Clin Genet. 2017;91:265.CrossRefPubMedGoogle Scholar
  22. 22.
    Woods DC, Tilly JL. Isolation, characterization and propagation of mitotically active germ cells from adult mouse and human ovaries. Nat Protoc. 2013;8(5):966–88.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Block E. Quantitative morphological investigations of the follicular system in women; variations at different ages. Acta Anat. 1952;14(1-2):108–23.CrossRefPubMedGoogle Scholar
  24. 24.
    Menken J, Trussell J, Larsen U. Age and infertility. Science. 1986;233(4771):1389–94.CrossRefPubMedGoogle Scholar
  25. 25.
    Schwartz D, Mayaux MJ. Female fecundity as a function of age: results of artificial insemination in 2193 nulliparous women with azoospermic husbands. Federation CECOS. N Engl J Med. 1982;306(7):404–6.CrossRefPubMedGoogle Scholar
  26. 26.
    Ripley M, Lanes A, Leveille MC, Shmorgun D. Does ovarian reserve predict egg quality in unstimulated therapeutic donor insemination cycles? Fertil Steril. 2015;103(5):1170–5.e2.CrossRefPubMedGoogle Scholar
  27. 27.
    Streuli I, de Mouzon J, Paccolat C, Chapron C, Petignat P, Irion OP, et al. AMH concentration is not related to effective time to pregnancy in women who conceive naturally. Reprod Biomed Online. 2014;28(2):216–24.CrossRefPubMedGoogle Scholar
  28. 28.
    Schieve LA, Tatham L, Peterson HB, Toner J, Jeng G. Spontaneous abortion among pregnancies conceived using assisted reproductive technology in the United States. Obstet Gynecol. 2003;101(5 Pt 1):959–67.PubMedGoogle Scholar
  29. 29.
    Causio F, Fischetto R, Sarcina E, Geusa S, Tartagni M. Chromosome analysis of spontaneous abortions after in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI). Eur J Obstet Gynecol Reprod Biol. 2002;105(1):44–8.CrossRefPubMedGoogle Scholar
  30. 30.
    Kim JW, Lee WS, Yoon TK, Seok HH, Cho JH, Kim YS, et al. Chromosomal abnormalities in spontaneous abortion after assisted reproductive treatment. BMC Med Genet. 2010;11:153.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Bingol B, Abike F, Gedikbasi A, Tapisiz OL, Gunenc Z. Comparison of chromosomal abnormality rates in ICSI for non-male factor and spontaneous conception. J Assist Reprod Genet. 2012;29(1):25–30.CrossRefPubMedGoogle Scholar
  32. 32.
    Nayak S, Pavone ME, Milad M, Kazer R. Aneuploidy rates in failed pregnancies following assisted reproductive technology. J Women's Health. 2011;20(8):1239–43.CrossRefGoogle Scholar
  33. 33.
    Werner M, Reh A, Grifo J, Perle MA. Characteristics of chromosomal abnormalities diagnosed after spontaneous abortions in an infertile population. J Assist Reprod Genet. 2012;29(8):817–20.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Lathi RB, Milki AA. Rate of aneuploidy in miscarriages following in vitro fertilization and intracytoplasmic sperm injection. Fertil Steril. 2004;81(5):1270–2.CrossRefPubMedGoogle Scholar
  35. 35.
    Nasseri A, Mukherjee T, Grifo JA, Noyes N, Krey L, Copperman AB. Elevated day 3 serum follicle stimulating hormone and/or estradiol may predict fetal aneuploidy. Fertil Steril. 1999;71(4):715–8.CrossRefPubMedGoogle Scholar
  36. 36.
    Navot D, Drews MR, Bergh PA, Guzman I, Karstaedt A, Scott RT Jr, et al. Age-related decline in female fertility is not due to diminished capacity of the uterus to sustain embryo implantation. Fertil Steril. 1994;61(1):97–101.CrossRefPubMedGoogle Scholar
  37. 37.
    Sagi-Dain L, Sagi S, Dirnfeld M. The effect of paternal age on oocyte donation outcomes. Obstet Gynecol Surv. 2016;71(5):301–6.CrossRefPubMedGoogle Scholar
  38. 38.
    Dubov T, Toledano-Alhadef H, Bokstein F, Constantini S, Ben-Shachar S. The effect of parental age on the presence of de novo mutations - lessons from neurofibromatosis type I. Mol Genet Genomic Med. 2016;4(4):480–6.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Munne S, Lee A, Rosenwaks Z, Grifo J, Cohen J. Diagnosis of major chromosome aneuploidies in human preimplantation embryos. Hum Reprod. 1993;8(12):2185–91.CrossRefPubMedGoogle Scholar
  40. 40.
    Northrop LE, Treff NR, Levy B, Scott RT Jr. SNP microarray-based 24 chromosome aneuploidy screening demonstrates that cleavage-stage FISH poorly predicts aneuploidy in embryos that develop to morphologically normal blastocysts. Mol Hum Reprod. 2010;16(8):590–600.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Mastenbroek S, Twisk M, van der Veen F, Repping S. Preimplantation genetic screening: a systematic review and meta-analysis of RCTs. Hum Reprod Update. 2011;17(4):454–66.CrossRefPubMedGoogle Scholar
  42. 42.
    Mastenbroek S, Twisk M, van Echten-Arends J, Sikkema-Raddatz B, Korevaar JC, Verhoeve HR, et al. In vitro fertilization with preimplantation genetic screening. N Engl J Med. 2007;357(1):9–17.CrossRefPubMedGoogle Scholar
  43. 43.
    Rubio C, Bellver J, Rodrigo L, Bosch E, Mercader A, Vidal C, et al. Preimplantation genetic screening using fluorescence in situ hybridization in patients with repetitive implantation failure and advanced maternal age: two randomized trials. Fertil Steril. 2013;99(5):1400–7.CrossRefPubMedGoogle Scholar
  44. 44.
    Scott RT Jr, Ferry K, Su J, Tao X, Scott K, Treff NR. Comprehensive chromosome screening is highly predictive of the reproductive potential of human embryos: a prospective, blinded, nonselection study. Fertil Steril. 2012;97(4):870–5.CrossRefPubMedGoogle Scholar
  45. 45.
    Scott RT Jr, Upham KM, Forman EJ, Zhao T, Treff NR. Cleavage-stage biopsy significantly impairs human embryonic implantation potential while blastocyst biopsy does not: a randomized and paired clinical trial. Fertil Steril. 2013;100(3):624–30.CrossRefPubMedGoogle Scholar
  46. 46.
    Kokkali G, Traeger-Synodinos J, Vrettou C, Stavrou D, Jones GM, Cram DS, et al. Blastocyst biopsy versus cleavage stage biopsy and blastocyst transfer for preimplantation genetic diagnosis of beta-thalassaemia: a pilot study. Hum Reprod. 2007;22(5):1443–9.CrossRefPubMedGoogle Scholar
  47. 47.
    Handyside AH, Montag M, Magli MC, Repping S, Harper J, Schmutzler A, et al. Multiple meiotic errors caused by predivision of chromatids in women of advanced maternal age undergoing in vitro fertilisation. Eur J Hum Genet. 2012;20(7):742–7.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Salvaggio CN, Forman EJ, Garnsey HM, Treff NR, Scott RT Jr. Polar body based aneuploidy screening is poorly predictive of embryo ploidy and reproductive potential. J Assist Reprod Genet. 2014;31:1221.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Forman EJ, Treff NR, Stevens JM, Garnsey HM, Katz-Jaffe MG, Scott RT Jr, et al. Embryos whose polar bodies contain isolated reciprocal chromosome aneuploidy are almost always euploid. Hum Reprod. 2013;28(2):502–8.CrossRefPubMedGoogle Scholar
  50. 50.
    Scott RT Jr, Treff NR, Stevens J, Forman EJ, Hong KH, Katz-Jaffe MG, et al. Delivery of a chromosomally normal child from an oocyte with reciprocal aneuploid polar bodies. J Assist Reprod Genet. 2012;29(6):533–7.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Scott KL, Hong KH, Scott RT Jr. Selecting the optimal time to perform biopsy for preimplantation genetic testing. Fertil Steril. 2013;100(3):608–14.CrossRefPubMedGoogle Scholar
  52. 52.
    Yang Z, Liu J, Collins GS, Salem SA, Liu X, Lyle SS, et al. Selection of single blastocysts for fresh transfer via standard morphology assessment alone and with array CGH for good prognosis IVF patients: results from a randomized pilot study. Mol Cytogenet. 2012;5(1):24.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Treff NR, Tao X, Ferry KM, Su J, Taylor D, Scott RT Jr. Development and validation of an accurate quantitative real-time polymerase chain reaction-based assay for human blastocyst comprehensive chromosomal aneuploidy screening. Fertil Steril. 2012;97(4):819–24.e2.CrossRefPubMedGoogle Scholar
  54. 54.
    Scott RT Jr, Upham KM, Forman EJ, Hong KH, Scott KL, Taylor D, et al. Blastocyst biopsy with comprehensive chromosome screening and fresh embryo transfer significantly increases in vitro fertilization implantation and delivery rates: a randomized controlled trial. Fertil Steril. 2013;100(3):697–703.CrossRefPubMedGoogle Scholar
  55. 55.
    Forman EJ, Hong KH, Ferry KM, Tao X, Taylor D, Levy B, et al. In vitro fertilization with single euploid blastocyst transfer: a randomized controlled trial. Fertil Steril. 2013;100(1):100–7.e1.CrossRefPubMedGoogle Scholar
  56. 56.
    Forman EJ, Hong KH, Franasiak JM, Scott RT Jr. Obstetrical and neonatal outcomes from the BEST trial: single embryo transfer with aneuploidy screening improves outcomes after in vitro fertilization without compromising delivery rates. Am J Obstet Gynecol. 2014;210:157.e1.CrossRefGoogle Scholar
  57. 57.
    Dahdouh EM, Balayla J, Garcia-Velasco JA. Comprehensive chromosome screening improves embryo selection: a meta-analysis. Fertil Steril. 2015;104(6):1503–12.CrossRefPubMedGoogle Scholar
  58. 58.
    Dahdouh EM, Balayla J, Garcia-Velasco JA. Impact of blastocyst biopsy and comprehensive chromosome screening technology on preimplantation genetic screening: a systematic review of randomized controlled trials. Reprod Biomed Online. 2015;30(3):281–9.CrossRefPubMedGoogle Scholar
  59. 59.
    Harton GL, Munne S, Surrey M, Grifo J, Kaplan B, McCulloh DH, et al. Diminished effect of maternal age on implantation after preimplantation genetic diagnosis with array comparative genomic hybridization. Fertil Steril. 2013;100(6):1695–703.CrossRefPubMedGoogle Scholar
  60. 60.
    Rabinowitz M, Ryan A, Gemelos G, Hill M, Baner J, Cinnioglu C, et al. Origins and rates of aneuploidy in human blastomeres. Fertil Steril. 2012;97(2):395–401.CrossRefPubMedGoogle Scholar
  61. 61.
    Ledger WL. Measurement of antimullerian hormone: not as straightforward as it seems. Fertil Steril. 2014;101(2):339.CrossRefPubMedGoogle Scholar
  62. 62.
    Franasiak JM, Forman EJ, Hong KH, Werner MD, Upham KM, Treff NR, et al. Aneuploidy across individual chromosomes at the embryonic level in trophectoderm biopsies: changes with patient age and chromosome structure. J Assist Reprod Genet. 2014;31(11):1501–9.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Werner MD, Leondires MP, Schoolcraft WB, Miller BT, Copperman AB, Robins ED, et al. Clinically recognizable error rate after the transfer of comprehensive chromosomal screened euploid embryos is low. Fertil Steril. 2014;102(6):1613–8.CrossRefPubMedGoogle Scholar
  64. 64.
    Tiegs AW, Hodes-Wertz B, McCulloh DH, Munne S, Grifo JA. Discrepant diagnosis rate of array comparative genomic hybridization in thawed euploid blastocysts. J Assist Reprod Genet. 2016;33(7):893–7.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Kung A, Munne S, Bankowski B, Coates A, Wells D. Validation of next-generation sequencing for comprehensive chromosome screening of embryos. Reprod Biomed Online. 2015;31(6):760–9.CrossRefPubMedGoogle Scholar
  66. 66.
    Maxwell SM, Colls P, Hodes-Wertz B, McCulloh DH, McCaffrey C, Wells D, et al. Why do euploid embryos miscarry? A case-control study comparing the rate of aneuploidy within presumed euploid embryos that resulted in miscarriage or live birth using next-generation sequencing. Fertil Steril. 2016;106:1414.CrossRefPubMedGoogle Scholar
  67. 67.
    Sher G, Keskintepe L, Keskintepe M, Maassarani G, Tortoriello D, Brody S. Genetic analysis of human embryos by metaphase comparative genomic hybridization (mCGH) improves efficiency of IVF by increasing embryo implantation rate and reducing multiple pregnancies and spontaneous miscarriages. Fertil Steril. 2009;92(6):1886–94.CrossRefPubMedGoogle Scholar
  68. 68.
    Keltz MD, Vega M, Sirota I, Lederman M, Moshier EL, Gonzales E, et al. Preimplantation genetic screening (PGS) with comparative genomic hybridization (CGH) following day 3 single cell blastomere biopsy markedly improves IVF outcomes while lowering multiple pregnancies and miscarriages. J Assist Reprod Genet. 2013;30(10):1333–9.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Eric J. Forman
    • 1
  • Nathan Treff
    • 2
    • 3
  • Rebekah S. Zimmerman
    • 4
  1. 1.Reproductive Endocrinology and InfertilityColumbia UniversityNew YorkUSA
  2. 2.Rutgers University School of MedicineNewarkUSA
  3. 3.Genomic PredictionNewarkUSA
  4. 4.Icahn School of Medicine at Mount SinaiNew YorkUSA

Personalised recommendations