Signaling Between Embryo and Endometrium: Normal Implantation

  • Chelsea Fox
  • Bruce A. Lessey


Implantation is a finely coordinated, species-specific orchestration of events between the nascent embryo and a receptive endometrium, culminating in the opportunity for new life. Implantation represents a stepwise progression of dynamic events that enjoins the embryonic proliferation and intrusion with endometrial differentiation to avoid excessive invasion, optimizing survival for both mother and offspring. The response to the embryo’s need to establish nutrition and waste management is achieved through eloquent endometrial accommodation that supplies the growing embryo with uterine milk from glandular secretions and later vascular integration through cytotrophoblast modification of those same vessels. This complex dance, as it progresses, provides ample opportunity for failure along the way. Indeed, success occurs in only a minority of pregnancies and occurs at a relatively low efficiency, particularly in Homo sapiens. Nonetheless, this process of acceptance of the fetal allograph and implantation is one of the most fascinating events in human biology. This chapter serves as an introduction to this book and provides an overview of that process.


Implantation Embryo Endometrium Signaling Pregnancy loss Infertility Endometrial receptivity 


  1. 1.
    Evans J, Salamonsen LA. Inflammation, leukocytes and menstruation. Rev Endocr Metab Disord. 2012;13:277–88.PubMedCrossRefGoogle Scholar
  2. 2.
    Lessey BA, Young SL. Homeostasis imbalance in the endometrium of women with implantation defects: the role of estrogen and progesterone. Semin Reprod Med. 2014;32:365–75.PubMedCrossRefGoogle Scholar
  3. 3.
    Garry R, Hart R, Karthigasu KA, Burke C. A re-appraisal of the morphological changes within the endometrium during menstruation: a hysteroscopic, histological and scanning electron microscopic study. Hum Reprod. 2009;1:1–9.Google Scholar
  4. 4.
    Hertig AJ, Behrman SJ, Kistner RW. Implantation of the human ovum. In: Progress in infertility, vol. 1. Boston: Little, Brown, & Co.; 1975. p. 435.Google Scholar
  5. 5.
    Hertig AT, Rock J, Adams EC. A description of 34 human ova within the first 17 days of development. Am J Anat. 1956;98:435–93.PubMedCrossRefGoogle Scholar
  6. 6.
    Navot D, Bergh P. Preparation of the human endometrium for implantation. Ann N Y Acad Sci. 1991;622:212–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Navot D, Bergh PA, Williams M, Garrisi GJ, Guzman I, Sandler B, Fox J, Schreiner-Engel P, Hofmann GE, Grunfeld L. An insight into early reproductive processes through the in vivo model of ovum donation. J Clin Endocrinol Metab. 1991;72:408–14.PubMedCrossRefGoogle Scholar
  8. 8.
    Bergh PA, Navot D. The impact of embryonic development and endometrial maturity on the timing of implantation. Fertil Steril. 1992;58:537–42.PubMedCrossRefGoogle Scholar
  9. 9.
    Bischof P, Aplin JD, Bentin-Ley U, Brannstrom M, Casslen B, Castrillo JL, Classen-Linke I, Critchley HO, Devoto L, D'Hooghe T, Horcajadas JA, Groothuis P, et al. Implantation of the human embryo: research lines and models. From the implantation research network ‘fruitful’. Gynecol Obstet Investig. 2006;62:206–16.CrossRefGoogle Scholar
  10. 10.
    Bentin-Ley U, Sjîgren A, Nilsson L, Hamberger L, Larsen JF, Horn T. Presence of uterine pinopodes at the embryo-endometrial interface during human implantation in vitro. Hum Reprod. 1999;14:515–20.PubMedCrossRefGoogle Scholar
  11. 11.
    Norwitz ER, Schust DJ, Fisher SJ. Implantation and the survival of early pregnancy. N Engl J Med. 2001;345:1400–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Burton GJ, Jauniaux E, Charnock-Jones DS. Human early placental development: potential roles of the endometrial glands. Placenta. 2007;28(Suppl A):S64–9.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Lessey BA, Young SL. The structure, function and evaluation of the female reproductive tract. In: Strauss JFI, Barbieri RL, editors. Reproductive endocrinology: physiology, pathology and clinical management, vol. 7. Philadelphia: Saunders Elsevier; 2012. p. 192–235.Google Scholar
  14. 14.
    McLaren A, Michie D. Studies on the transfer of fertilized mouse eggs to uterine foster-mothers. J Exp Biol. 1954;33:394.Google Scholar
  15. 15.
    Psychoyos A. Hormonal control of ovoimplantation. Vitams Horm. 1973;31:201–56.CrossRefGoogle Scholar
  16. 16.
    Finn CA, Martin L. The control of implantation. J Reprod Fertil. 1974;39:195–206.PubMedCrossRefGoogle Scholar
  17. 17.
    Hodgen GD. Surrogate embryo transfer combined with estrogen-progesterone therapy in monkeys: implantation, gestation, and delivery without ovaries. JAMA. 1983;250:2167–71.PubMedCrossRefGoogle Scholar
  18. 18.
    Noyes RW, Hertig AI, Rock J. Dating the endometrial biopsy. Fertil Steril. 1950;1:3–25.CrossRefGoogle Scholar
  19. 19.
    Fawcett DW. The development of mouse ova under the capsule of the kidney. Anat Rec. 1950;108:71.PubMedCrossRefGoogle Scholar
  20. 20.
    Kirby DR. The development of mouse blastocysts transplanted to the scrotal and cryptorchid testis. J Anat. 1963;97:119.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Beier HM. Oviducal and uterine fluids. J Reprod Fertil. 1974;37:221–37.PubMedCrossRefGoogle Scholar
  22. 22.
    Campbell KL, Rockett JC. Biomarkers of ovulation, endometrial receptivity, fertilisation, implantation and early pregnancy progression. Paediatr Perinat Epidemiol. 2006;20(Suppl 1):13–25.PubMedCrossRefGoogle Scholar
  23. 23.
    May KE, Villar J, Kirtley S, Kennedy SH, Becker CM. Endometrial alterations in endometriosis: a systematic review of putative biomarkers. Hum Reprod Update. 2011;17:637–53.PubMedCrossRefGoogle Scholar
  24. 24.
    May KE, Conduit-Hulbert SA, Villar J, Kirtley S, Kennedy SH, Becker CM. Peripheral biomarkers of endometriosis: a systematic review. Hum Reprod Update. 2010;16:651–74.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Jones GS. Some newer aspects of management of infertility. JAMA. 1949;141:1123–9.CrossRefGoogle Scholar
  26. 26.
    Murray MJ, Meyer WR, Zaino RJ, Lessey BA, Novotny DB, Ireland K, Zeng D, Fritz MA. A critical analysis of the accuracy, reproducibility, and clinical utility of histologic endometrial dating in fertile women. Fertil Steril. 2004;81:1333–43.PubMedCrossRefGoogle Scholar
  27. 27.
    Practice Committee of the American Society for Reproductive M. Current clinical irrelevance of luteal phase deficiency: a committee opinion. Fertil Steril. 2015;103:e27–32.Google Scholar
  28. 28.
    Coutifaris C, Myers ER, Guzick DS, Diamond MP, Carson SA, Legro RS, McGovern PG, Schlaff WD, Carr BR, Steinkampf MP, Silva S, Vogel DL, et al. Histological dating of timed endometrial biopsy tissue is not related to fertility status. Fertil Steril. 2004;82:1264–72.PubMedCrossRefGoogle Scholar
  29. 29.
    Schlafke S, Enders AC. Cellular basis of interaction between trophoblast and uterus at implantation. Biol Reprod. 1975;12:41.PubMedCrossRefGoogle Scholar
  30. 30.
    Martin PM, Sutherland AE. Exogenous amino acids regulate trophectoderm differentiation in the mouse blastocyst through an mTOR-dependent pathway. Dev Biol. 2001;240:182–93.PubMedCrossRefGoogle Scholar
  31. 31.
    Sutherland A. Mechanisms of implantation in the mouse: differentiation and functional importance of trophoblast giant cell behavior. Dev Biol. 2003;258:241–51.PubMedCrossRefGoogle Scholar
  32. 32.
    Carson DD, Bagchi I, Dey SK, Enders AC, Fazleabas AT, Lessey BA, Yoshinaga K. Embryo implantation. Dev Biol. 2000;223:217–37.PubMedCrossRefGoogle Scholar
  33. 33.
    Donaghay M, Lessey BA. Uterine receptivity: alterations associated with benign gynecological disease. Semin Reprod Med. 2007;25:461–75.PubMedCrossRefGoogle Scholar
  34. 34.
    Cha J, Sun X, Dey SK. Mechanisms of implantation: strategies for successful pregnancy. Nat Med. 2012;18:1754–67.PubMedCrossRefGoogle Scholar
  35. 35.
    Nilsson O. Ultrastructure of mouse uterine surface epithelium under different estrogenic influences. 5. Continuous administration of estrogen. J Ultrastruct Res. 1959;2:342–51.PubMedCrossRefGoogle Scholar
  36. 36.
    Psychoyos A, Mandon P. Study of the surface of the uterine epithelium by scanning electron microscope. Observations in the rat at the 4th and 5th day of pregnancy. C R Acad Sci Hebd Seances Acad Sci D. 1971;272:2723–5.PubMedGoogle Scholar
  37. 37.
    Nikas G, Drakakis P, Loutradis D, Mara-Skoufari C, Koumantakis E, Michalas S, Psychoyos A. Uterine pinopodes as markers of the ‘nidation window’ in cycling women receiving exogenous oestradiol and progesterone. Hum Reprod. 1995;10:1208–13.PubMedCrossRefGoogle Scholar
  38. 38.
    Psychoyos A, Nikas G. Uterine pinopodes as markers of uterine receptivity. Assist Reprod Rev. 1994;4:26–32.Google Scholar
  39. 39.
    Nikas G. Cell-surface morphological events relevant to human implantation. Hum Reprod. 1999;14(Suppl 2):37–44.PubMedCrossRefGoogle Scholar
  40. 40.
    Martel D, Monier MN, Roche D, Psychoyos A. Hormonal dependence of pinopode formation at the uterine luminal surface. Hum Reprod. 1991;6:597.PubMedCrossRefGoogle Scholar
  41. 41.
    Develioglu OH, Nikas G, Hsiu JG, Toner JP, Jones HW Jr. Detection of endometrial pinopodes by light microscopy. Fertil Steril. 2000;74:767–70.PubMedCrossRefGoogle Scholar
  42. 42.
    Apparao KB, Murray MJ, Fritz MA, Meyer WR, Chambers AF, Truong PR, Lessey BA. Osteopontin and its receptor alphavbeta(3) integrin are coexpressed in the human endometrium during the menstrual cycle but regulated differentially. J Clin Endocrinol Metab. 2001;86:4991–5000.PubMedGoogle Scholar
  43. 43.
    Bentin-Ley U, Horn T, Sjîgren A, Sorensen S, Larsen JF, Hamberger L. Ultrastructure of human blastocyst-endometrial interactions in vitro. J Reprod Fertil. 2000;120:337–50.PubMedCrossRefGoogle Scholar
  44. 44.
    Kang YJ, Forbes K, Carver J, Aplin JD. The role of the osteopontin-integrin alphavbeta3 interaction at implantation: functional analysis using three different in vitro models. Hum Reprod. 2014;29:739–49.PubMedCrossRefGoogle Scholar
  45. 45.
    Acosta AA, Elberger L, Borghi M, Calamera JC, Chemes H, Doncel GF, Kliman H, Lema B, Lustig L, Papier S. Endometrial dating and determination of the window of implantation in healthy fertile women. Fertil Steril. 2000;73:788–98.PubMedCrossRefGoogle Scholar
  46. 46.
    Quinn CE, Casper RF. Pinopodes: a questionable role in endometrial receptivity. Hum Reprod Update. 2009;15:229–36.PubMedCrossRefGoogle Scholar
  47. 47.
    Usadi RS, Murray MJ, Bagnell RC, Fritz MA, Kowalik AI, Meyer WR, Lessey BA. Temporal and morphologic characteristics of pinopod expression across the secretory phase of the endometrial cycle in normally cycling women with proven fertility. Fertil Steril. 2003;79:970–4.PubMedCrossRefGoogle Scholar
  48. 48.
    Lessey BA, Castelbaum AJ, Buck CA, Lei Y, Yowell CW, Sun J. Further characterization of endometrial integrins during the menstrual cycle and in pregnancy. Fertil Steril. 1994;62:497–506.PubMedCrossRefGoogle Scholar
  49. 49.
    Reddy KV, Meherji PK. Integrin cell adhesion molecules in endometrium of fertile and infertile women throughout menstrual cycle. Indian J Exp Biol. 1999;37:323–31.PubMedGoogle Scholar
  50. 50.
    Achache H, Revel A. Endometrial receptivity markers, the journey to successful embryo implantation. Hum Reprod Update. 2006;12:731–46.PubMedCrossRefGoogle Scholar
  51. 51.
    Hoozemans DA, Schats R, Lambalk CB, Homburg R, Hompes PG. Human embryo implantation: current knowledge and clinical implications in assisted reproductive technology. Reprod Biomed Online. 2004;9:692–715.PubMedCrossRefGoogle Scholar
  52. 52.
    Lessey BA, Castelbaum AJ, Sawin SW, Sun J. Integrins as markers of uterine receptivity in women with primary unexplained infertility. Fertil Steril. 1995;63:535–42.PubMedCrossRefGoogle Scholar
  53. 53.
    Lessey BA, Castelbaum AJ, Sawin SW, Buck CA, Schinnar R, Bilker W, Strom BL. Aberrant integrin expression in the endometrium of women with endometriosis. J Clin Endocrinol Metab. 1994;79:643–9.PubMedGoogle Scholar
  54. 54.
    Meyer WR, Castelbaum AJ, Somkuti S, Sagoskin AW, Doyle M, Harris JE, Lessey BA. Hydrosalpinges adversely affect markers of endometrial receptivity. Hum Reprod. 1997;12:1393–8.PubMedCrossRefGoogle Scholar
  55. 55.
    Apparao KB, Lovely LP, Gui Y, Lininger RA, Lessey BA. Elevated endometrial androgen receptor expression in women with polycystic ovarian syndrome. Biol Reprod. 2002;66:297–304.PubMedCrossRefGoogle Scholar
  56. 56.
    Zhu HH, Huang JR, Mazela J, Elias J, Tseng L. Progestin stimulates the biosynthesis of fibronectin and accumulation of fibronectin mRNA in human endometrial stromal cells. Hum Reprod. 1992;7:141–6.PubMedCrossRefGoogle Scholar
  57. 57.
    Giudice LC. Potential biochemical markers of uterine receptivity. Hum Reprod. 1999;14(Suppl 2):3–16.PubMedCrossRefGoogle Scholar
  58. 58.
    Damsky CH, Librach C, Lim KH, Fitzgerald ML, McMaster MT, Janatpour M, Zhou Y, Logan SK, Fisher SJ. Integrin switching regulates normal trophoblast invasion. Development. 1994;120:3657–66.PubMedGoogle Scholar
  59. 59.
    Karsdorp VH, Dekker GA, Bast A, van Kamp GJ, Bouman AA, van Vugt JM, van Geijn HP. Maternal and fetal plasma concentrations of endothelin, lipidhydroperoxides, glutathione peroxidase and fibronectin in relation to abnormal umbilical artery velocimetry. Eur J Obstet Gynecol Reprod Biol. 1998;80:39–44.PubMedCrossRefGoogle Scholar
  60. 60.
    Damsky CH, Fitzgerald ML, Fisher SJ. Distribution patterns of extracellular matrix components and adhesion receptors are intricately modulated during first trimester cytotrophoblast differentiation along the invasive pathway, in vivo. J Clin Invest. 1992;89:210–22.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Zhou Y, Fisher SJ, Janatpour M, Genbacev O, Dejana E, Wheelock M, Damsky CH. Human cytotrophoblasts adopt a vascular phenotype as they differentiate - a strategy for successful endovascular invasion? J Clin Invest. 1997;99:2139–51.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Alon R, Feigelson S. From rolling to arrest on blood vessels: leukocyte tap dancing on endothelial integrin ligands and chemokines at sub-second contacts. Semin Immunol. 2002;14:93–104.PubMedCrossRefGoogle Scholar
  63. 63.
    Genbacev OD, Prakobphol A, Foulk RA, Krtolica AR, Ilic D, Singer MS, Yan ZQ, Kiessling LL, Rosen SD, Fisher SJ. Trophoblast L-selectin-mediated adhesion at the maternal-fetal interface. Science. 2003;299:405–8.PubMedCrossRefGoogle Scholar
  64. 64.
    Fazleabas AT, Kim JJ. Development. What makes an embryo stick? Science. 2003;299:355–6.PubMedCrossRefGoogle Scholar
  65. 65.
    Foulk RA, Zdravkovic T, Genbacev O, Prakobphol A. Expression of L-selectin ligand MECA-79 as a predictive marker of human uterine receptivity. J Assist Reprod Genet. 2007;24:316–21.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Margarit L, Gonzalez D, Lewis PD, Hopkins L, Davies C, Conlan RS, Joels L, White JO. L-selectin ligands in human endometrium: comparison of fertile and infertile subjects. Hum Reprod. 2009;24:2767–77.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Hey NA, Graham RA, Seif MW, Aplin JD. The polymorphic epithelial mucin MUC1 in human endometrium is regulated with maximal expression in the implantation phase. J Clin Endocrinol Metab. 1994;78:337–42.PubMedGoogle Scholar
  68. 68.
    Hey NA, Aplin JD. Sialyl-Lewis x and Sialyl-Lewis a are associated with MUC1 in human endometrium. Glycoconj J. 1996;13:769–79.PubMedCrossRefGoogle Scholar
  69. 69.
    Wesseling J, van der Valk SW, Hilkens J. A mechanism for inhibition of E-cadherin-mediated cell-cell adhesion by the membrane-associated mucin episialin/MUC1. Mol Biol Cell. 1996;7:565–77.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Lessey BA. Two pathways of progesterone action in the human endometrium: implications for implantation and contraception. Steroids. 2003;68:809–15.PubMedCrossRefGoogle Scholar
  71. 71.
    Humbel RE. Insulin-like growth factors I and II. Eur J Biochem. 1990;190:445–62.PubMedCrossRefGoogle Scholar
  72. 72.
    Murata K, Maruo T, Matsuo H, Mochizuki M. insulin-like growth factor-I (IGF-I) as a local regulator of proliferation and differentiation of villous trophoblasts in early pregnancy. Nihon Sanka Fujinka Gakkai Zasshi. 1994;46:87–94.PubMedGoogle Scholar
  73. 73.
    Oner J, Oner H. Immunolocalization of insulin-like growth factor I (IGF-I) during preimplantation in rat uterus. Growth Hormon IGF Res. 2007;17:271–8.CrossRefGoogle Scholar
  74. 74.
    Rutanen EM. Insulin-like growth factors in endometrial function. Gynecol Endocrinol. 1998;12:399–406.PubMedCrossRefGoogle Scholar
  75. 75.
    Van Sinderen M, Menkhorst E, Winship A, Cuman C, Dimitriadis E. Preimplantation human blastocyst-endometrial interactions: the role of inflammatory mediators. Am J Reprod Immunol. 2013;69:427–40.PubMedCrossRefGoogle Scholar
  76. 76.
    Lessey BA, Gui Y, Apparao KB, Young SL, Mulholland J. Regulated expression of heparin-binding EGF-like growth factor (HB-EGF) in the human endometrium: a potential paracrine role during implantation. Mol Reprod Dev. 2002;62:446–55.PubMedCrossRefGoogle Scholar
  77. 77.
    Stavreus-Evers A, Aghajanova L, Brismar H, Eriksson H, Landgren BM, Hovatta O. Co-existence of heparin-binding epidermal growth factor-like growth factor and pinopodes in human endometrium at the time of implantation. Mol Hum Reprod. 2002;8:765–9.PubMedCrossRefGoogle Scholar
  78. 78.
    Smith SK. Angiogenesis and implantation. Hum Reprod. 2000;15(Suppl 6):59–66.PubMedGoogle Scholar
  79. 79.
    Leach RE, Khalifa R, Ramirez ND, Das SK, Wang J, Dey SK, Romero R, Armant DR. Multiple roles for heparin-binding epidermal growth factor-like growth factor are suggested by its cell-specific expression during the human endometrial cycle and early placentation. J Clin Endocrinol Metab. 1999;84:3355–63.PubMedGoogle Scholar
  80. 80.
    Das SK, Wang XN, Paria BC, Damm D, Abraham JA, Klagsbrun M, Andrews GK, Dey SK. Heparin-binding EGF-like growth factor gene is induced in the mouse uterus temporally by the blastocyst solely at the site of its apposition: a possible ligand for interaction with blastocyst EGF-receptor in implantation. Development. 1994;120:1071–83.PubMedGoogle Scholar
  81. 81.
    Martin KL, Barlow DH, Sargent IL. Heparin-binding epidermal growth factor significantly improves human blastocyst development and hatching in serum-free medium. Hum Reprod. 1998;13:1645–52.PubMedCrossRefGoogle Scholar
  82. 82.
    Baker PN, Krasnow J, Roberts JM, Yeo KT. Elevated serum levels of vascular endothelial growth factor in patients with preeclampsia. Obstet Gynecol. 1995;86:815–21.PubMedCrossRefGoogle Scholar
  83. 83.
    Barroso G, Barrionuevo M, Rao P, Graham L, Danforth D, Huey S, Abuhamad A, Oehninger S. Vascular endothelial growth factor, nitric oxide, and leptin follicular fluid levels correlate negatively with embryo quality in IVF patients. Fertil Steril. 1999;72:1024–6.PubMedCrossRefGoogle Scholar
  84. 84.
    Dorn C, Reinsberg J, Kupka M, van der Ven H, Schild RL. Leptin, VEGF, IGF-1, and IGFBP-3 concentrations in serum and follicular fluid of women undergoing in vitro fertilization. Arch Gynecol Obstet. 2003;268:187–93.PubMedCrossRefGoogle Scholar
  85. 85.
    Minas V, Loutradis D, Makrigiannakis A. Factors controlling blastocyst implantation. Reprod Biomed Online. 2005;10:205–16.PubMedCrossRefGoogle Scholar
  86. 86.
    Alexander CM, Hansell EJ, Behrendtsen O, Flannery ML, Kishnani NS, Hawkes SP, Werb Z. Expression and function of matrix metalloproteinases and their inhibitors at the maternal-embryonic boundary during mouse embryo implantation. Development. 1996;122:1723–36.PubMedGoogle Scholar
  87. 87.
    Das SK, Yano S, Wang J, Edwards DR, Nagase H, Dey SK. Expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in the mouse uterus during the peri-implantation period. Dev Genet. 1997;21:44–54.PubMedCrossRefGoogle Scholar
  88. 88.
    Maia-Filho VO, Rocha AM, Ferreira FP, Bonetti TC, Serafini P, Motta EL. Matrix metalloproteinases 2 and 9 and e-cadherin expression in the endometrium during the implantation window of infertile women before in vitro fertilization treatment. Reprod Sci. 2015;22:416–22.PubMedCrossRefGoogle Scholar
  89. 89.
    Rechtman MP, Zhang J, Salamonsen LA. Effect of inhibition of matrix metalloproteinases on endometrial decidualization and implantation in mated rats. J Reprod Fertil. 1999;117:169–77.PubMedCrossRefGoogle Scholar
  90. 90.
    Riley SC, Webb CJ, Leask R, McCaig FM, Howe DC. Involvement of matrix metalloproteinases 2 and 9, tissue inhibitor of metalloproteinases and apoptosis in tissue remodelling in the sheep placenta. J Reprod Fertil. 2000;118:19–27.PubMedCrossRefGoogle Scholar
  91. 91.
    Salamonsen LA, Nagase H, Woolley DE. Matrix metalloproteinases and their tissue inhibitors at the ovine trophoblast-uterine interface. J Reprod Fertil Suppl. 1995;49:29–37.PubMedGoogle Scholar
  92. 92.
    Hurskainen TL, Hirohata S, Seldin MF, Apte SS. ADAM-TS5, ADAM-TS6, and ADAM-TS7, novel members of a new family of zinc metalloproteases. General features and genomic distribution of the ADAM-TS family. J Biol Chem. 1999;274:25555–63.PubMedCrossRefGoogle Scholar
  93. 93.
    Taylor HS, Vanden Heuvel GB, Igarashi P. A conserved Hox axis in the mouse and human female reproductive system: late establishment and persistent adult expression of the Hoxa cluster genes. Biol Reprod. 1997;57:1338–45.PubMedCrossRefGoogle Scholar
  94. 94.
    Kappen C, Schughart K, Ruddle FH. Early evolutionary origin of major homeodomain sequence classes. Genomics. 1993;18:54–70.PubMedCrossRefGoogle Scholar
  95. 95.
    Schughart K, Kappen C, Ruddle FH. Mammalian homeobox-containing genes: genome organization, structure, expression and evolution. Br J Cancer Suppl. 1988;9:9–13.PubMedPubMedCentralGoogle Scholar
  96. 96.
    Taylor HS, Arici A, Olive D, Igarashi P. HOXA10 is expressed in response to sex steroids at the time of implantation in the human endometrium. J Clin Invest. 1998;101:1379–84.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Taylor HS, Igarashi P, Olive DL, Arici A. Sex steroids mediate HOXA11 expression in the human peri-implantation endometrium. J Clin Endocrinol Metab. 1999;84:1129–35.PubMedGoogle Scholar
  98. 98.
    Cermik D, Selam B, Taylor HS. Regulation of HOXA-10 expression by testosterone in vitro and in the endometrium of patients with polycystic ovary syndrome. J Clin Endocrinol Metab. 2003;88:238–43.PubMedCrossRefGoogle Scholar
  99. 99.
    Daftary GS, Taylor HS. Hydrosalpinx fluid diminishes endometrial cell HOXA10 expression. Fertil Steril. 2002;78:577–80.PubMedCrossRefGoogle Scholar
  100. 100.
    Taylor HS, Bagot C, Kardana A, Olive D, Arici A. HOX gene expression is altered in the endometrium of women with endometriosis. Hum Reprod. 1999;14:1328–31.PubMedCrossRefGoogle Scholar
  101. 101.
    Psychoyos A, Nikas G, Gravanis A. The role of prostaglandins in blastocyst implantation. Hum Reprod. 1995;10(Suppl 2):30–42.PubMedCrossRefGoogle Scholar
  102. 102.
    Chakraborty I, Das SK, Wang J, Dey SK. Developmental expression of the cyclo-oxygenase-1 and cyclo-oxygenase-2 genes in the peri-implantation mouse uterus and their differential regulation by the blastocyst and ovarian steroids. J Mol Endocrinol. 1996;16:107–22.PubMedCrossRefGoogle Scholar
  103. 103.
    Gupta A, Huet YM, Dey SK. Evidence for prostaglandins and leukotrienes as mediators of phase I of estrogen action in implantation in the mouse. Endocrinology. 1989;124:546–8.PubMedCrossRefGoogle Scholar
  104. 104.
    Johnson DC, Dey SK. Role of histamine in implantation: dexamethasone inhibits estradiol-induced implantation in the rat. Biol Reprod. 1980;22:1136–41.PubMedCrossRefGoogle Scholar
  105. 105.
    Kennedy TG. Evidence for a role for prostaglandins in the initiation of blastocyst implantation in the rat. Biol Reprod. 1977;16:286–91.PubMedCrossRefGoogle Scholar
  106. 106.
    Lau IF, Saksena SK, Chang MC. Pregnancy blockade by indomethacin, an inhibitor of prostaglandin synthesis: its reversal by prostaglandins and progesterone in mice. Prostaglandins. 1973;4:795–803.PubMedCrossRefGoogle Scholar
  107. 107.
    Malathy PV, Cheng HC, Dey SK. Production of leukotrienes and prostaglandins in the rat uterus during peri-implantation period. Prostaglandins. 1986;32:605–14.PubMedCrossRefGoogle Scholar
  108. 108.
    Tawfik OW, Sagrillo C, Johnson DC, Dey SK. Decidualization in the rat: role of leukotrienes and prostaglandins. Prostaglandins Leukot Med. 1987;29:221–7.PubMedCrossRefGoogle Scholar
  109. 109.
    Brumsted JR, Chapitis J, Deaton JL, Riddick DH, Gibson M. Prostaglandin F2 alpha synthesis and metabolism by luteal phase endometrium in vitro. Fertil Steril. 1989;52:769–73.PubMedCrossRefGoogle Scholar
  110. 110.
    Ishihara O, Tsutsumi O, Mizuno M, Kinoshita K, Satoh K. Metabolism of arachidonic acid and synthesis of prostanoids in human endometrium and decidua. Prostaglandins Leukot Med. 1986;24:93–102.PubMedCrossRefGoogle Scholar
  111. 111.
    Maathuis JB, Kelly RW. Concentrations of prostaglandins F2alpha and E2 in the endometrium throughout the human menstrual cycle, after the administration of clomiphene or an oestrogen-progestogen pill and in early pregnancy. J Endocrinol. 1978;77:361–71.PubMedCrossRefGoogle Scholar
  112. 112.
    Salamonsen LA, Findlay JK. Regulation of endometrial prostaglandins during the menstrual cycle and in early pregnancy. Reprod Fertil Dev. 1990;2:443–57.PubMedCrossRefGoogle Scholar
  113. 113.
    Singh EJ, Baccarini I, Zuspan FP. Levels of prostaglandins F-2alpha and E-2 in human endometrium during the menstrual cycle. Am J Obstet Gynecol. 1975;121:1003–6.PubMedCrossRefGoogle Scholar
  114. 114.
    van der Weiden RM, Helmerhorst FM, Keirse MJ. Influence of prostaglandins and platelet activating factor on implantation. Hum Reprod. 1991;6:436–42.PubMedCrossRefGoogle Scholar
  115. 115.
    Evans CA, Kennedy TG. The importance of prostaglandin synthesis for the initiation of blastocyst implantation in the hamster. J Reprod Fertil. 1978;54:255–61.PubMedCrossRefGoogle Scholar
  116. 116.
    Hoos PC, Hoffman LH. Effect of histamine receptor antagonists and indomethacin on implantation in the rabbit. Biol Reprod. 1983;29:833–40.PubMedCrossRefGoogle Scholar
  117. 117.
    Kennedy TG, Gillio-Meina C, Phang SH. Prostaglandins and the initiation of blastocyst implantation and decidualization. Reproduction. 2007;134:635–43.PubMedCrossRefGoogle Scholar
  118. 118.
    Lundkvist O, Nilsson BO. Ultrastructural studies of the temporal relationship between loss of zona pellucida and appearance of blastocyst-induced stromal changes during normal pregnancy in rats. Anat Embryol. 1984;170:45–9.PubMedCrossRefGoogle Scholar
  119. 119.
    Kennedy TG, Doktorcik PE. Effects of analogues of prostaglandin E2 and F2 alpha on the decidual cell reaction in the rat. Prostaglandins. 1988;35:207–19.PubMedCrossRefGoogle Scholar
  120. 120.
    Oettel M, Koch M, Kurischko A, Schubert K. Direct evidence for the involvement of prostaglandin F2 alpha in the first step of estrone-induced blastocyst implantation in the spayed rat. Steroids. 1979;33:1–8.PubMedCrossRefGoogle Scholar
  121. 121.
    Granot I, Gnainsky Y, Dekel N. Endometrial inflammation and effect on implantation improvement and pregnancy outcome. Reproduction. 2012;144:661–8.PubMedCrossRefGoogle Scholar
  122. 122.
    Kelly RW, King AE, Critchley HO. Cytokine control in human endometrium. Reproduction. 2001;121:3–19.PubMedCrossRefGoogle Scholar
  123. 123.
    Ross JW, Malayer JR, Ritchey JW, Geisert RD. Characterization of the interleukin-1beta system during porcine trophoblastic elongation and early placental attachment. Biol Reprod. 2003;69:1251–9.PubMedCrossRefGoogle Scholar
  124. 124.
    Boomsma CM, Kavelaars A, Eijkemans MJ, Amarouchi K, Teklenburg G, Gutknecht D, Fauser BJ, Heijnen CJ, Macklon NS. Cytokine profiling in endometrial secretions: a non-invasive window on endometrial receptivity. Reprod Biomed Online. 2009;18:85–94.PubMedCrossRefGoogle Scholar
  125. 125.
    Simon C, Valbuena D, Krussel J, Bernal A, Murphy CR, Shaw T, Pellicer A, Polan ML. Interleukin-1 receptor antagonist prevents embryonic implantation by a direct effect on the endometrial epithelium. Fertil Steril. 1998;70:896–906.PubMedCrossRefGoogle Scholar
  126. 126.
    Blitek A, Morawska E, Ziecik AJ. Regulation of expression and role of leukemia inhibitory factor and interleukin-6 in the uterus of early pregnant pigs. Theriogenology. 2012;78:951–64.PubMedCrossRefGoogle Scholar
  127. 127.
    Modric T, Kowalski AA, Green ML, Simmen RC, Simmen FA. Pregnancy-dependent expression of leukaemia inhibitory factor (LIF), LIF receptor-beta and interleukin-6 (IL-6) messenger ribonucleic acids in the porcine female reproductive tract. Placenta. 2000;21:345–53.PubMedCrossRefGoogle Scholar
  128. 128.
    Simon C, Piquette GN, Frances A, Polan ML. Localization of interleukin-1 type I receptor and interleukin-1 beta in human endometrium throughout the menstrual cycle. J Clin Endocrinol Metab. 1993;77:549–55.PubMedGoogle Scholar
  129. 129.
    Lass A, Weiser W, Munafo A, Loumaye E. Leukemia inhibitory factor in human reproduction. Fertil Steril. 2001;76:1091–6.PubMedCrossRefGoogle Scholar
  130. 130.
    Bhatt H, Brunet LJ, Stewart CL. Uterine expression of leukemia inhibitory factor coincides with the onset of blastocyst implantation. ProcNatlAcad SciUS A. 1991;88:11408–12.CrossRefGoogle Scholar
  131. 131.
    Stewart CL. The role of leukemia inhibitory factor (LIF) and other cytokines in regulating implantation in mammals. Ann N Y Acad Sci. 1994;734:157.PubMedCrossRefGoogle Scholar
  132. 132.
    Cullinan EB, Abbondanzo SJ, Anderson PS, Pollard JW, Lessey BA, Stewart CL. Leukemia inhibitory factor (LIF) and LIF receptor expression in human endometrium suggests a potential autocrine/paracrine function in regulating embryo implantation. Proc Natl Acad Sci U S A. 1996;93:3115–20.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Nachtigall MJ, Kliman HJ, Feinberg RF, Olive DL, Engin O, Arici A. The effect of leukemia inhibitory factor (LIF) on trophoblast differentiation: a potential role in human implantation. J Clin Endocrinol Metab. 1996;81:801–6.PubMedGoogle Scholar
  134. 134.
    Hambartsoumian E. Endometrial leukemia inhibitory factor (LIF) as a possible cause of unexplained infertility and multiple failures of implantation. Am J Reprod Immunol. 1998;39:137–43.PubMedCrossRefGoogle Scholar
  135. 135.
    Laird SM, Tuckerman EM, Dalton CF, Dunphy BC, Li TC, Zhang X. The production of leukaemia inhibitory factor by human endometrium: presence in uterine flushings and production by cells in culture. Hum Reprod. 1997;12:569–74.PubMedCrossRefGoogle Scholar
  136. 136.
    Brinsden PR, Alam V, de Moustier B, Engrand P. Recombinant human leukemia inhibitory factor does not improve implantation and pregnancy outcomes after assisted reproductive techniques in women with recurrent unexplained implantation failure. Fertil Steril. 2009;91:1445–7.PubMedCrossRefGoogle Scholar
  137. 137.
    Macklon NS, Geraedts JP, Fauser BC. Conception to ongoing pregnancy: the 'black box' of early pregnancy loss. Hum Reprod Update. 2002;8:333–43.PubMedCrossRefGoogle Scholar
  138. 138.
    Fox C, Morin S, Jeong JW, Scott RT Jr, Lessey BA. Local and systemic factors and implantation: what is the evidence? Fertil Steril. 2016;105:873–84.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Kim BG, Yoo JY, Kim TH, Shin JH, Langenheim JF, Ferguson SD, Fazleabas AT, Young SL, Lessey BA, Jeong JW. Aberrant activation of signal transducer and activator of transcription-3 (STAT3) signaling in endometriosis. Hum Reprod. 2015;30:1069–78.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Evans-Hoeker E, Lessey BA, Jeong JW, Savaris RF, Palomino WA, Yuan L, Schammel DP, Young SL. Endometrial BCL6 overexpression in Eutopic endometrium of women with endometriosis. Reprod Sci. 2016;23:1234–41.PubMedCrossRefGoogle Scholar
  141. 141.
    Tiberi L, Bonnefont J, van den Ameele J, Le Bon SD, Herpoel A, Bilheu A, Baron BW, Vanderhaeghen P. A BCL6/BCOR/SIRT1 complex triggers neurogenesis and suppresses medulloblastoma by repressing sonic hedgehog signaling. Cancer Cell. 2014;26:797–812.PubMedCrossRefGoogle Scholar
  142. 142.
    Yoo JY, Kim TH, Fazleabas AT, Palomino WA, Ahn SH, Tayade C, Schammel DP, Young SL, Jeong JW, Lessey BAKRAS. Activation and over-expression of SIRT1/BCL6 contributes to the pathogenesis of endometriosis and progesterone resistance. Sci Rep. 2017;7:6765.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Maruyama T, Yoshimura Y. Molecular and cellular mechanisms for differentiation and regeneration of the uterine endometrium. Endocr J. 2008;55:795–810.PubMedCrossRefGoogle Scholar
  144. 144.
    Walker SR, Nelson EA, Yeh JE, Pinello L, Yuan GC, Frank DA. STAT5 outcompetes STAT3 to regulate the expression of the oncogenic transcriptional modulator BCL6. Mol Cell Biol. 2013;33:2879–90.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Yoo JY, Jeong JW, Fazleabas AT, Tayade C, Young SL, Lessey BA. Protein inhibitor of activated STAT3 (PIAS3) is down-regulated in Eutopic endometrium of women with endometriosis. Biol Reprod. 2016;95(1):11.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Lim JJ, Lee DR, Song HS, Kim KS, Yoon TK, Gye MC, Kim MK. Heparin-binding epidermal growth factor (HB-EGF) may improve embryonic development and implantation by increasing vitronectin receptor (integrin alphanubeta3) expression in peri-implantation mouse embryos. J Assist Reprod Genet. 2006;23:111–9.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Yoo HJ, Barlow DH, Mardon HJ. Temporal and spatial regulation of expression of heparin-binding epidermal growth factor-like growth factor in the human endometrium: a possible role in blastocyst implantation. Dev Genet. 1997;21:102–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Obstetrics and GynecologyGreenville Health SystemGreenvilleUSA

Personalised recommendations