Skip to main content

Probiotics and Prebiotics for the Health of Cattle

  • Chapter
  • First Online:
Probiotics and Prebiotics in Animal Health and Food Safety

Abstract

Throughout the years the livestock production systems have evolved modifying the natural resistance of animals against the diseases. These systems are characterized by new feeding methods (especially using unnatural feeds such as milk replacers), the intensive farming which limits the maternal contact and uses artificial habitat conditions, the use of animals with better growth parameters, and the use of antimicrobials substances. All these conditions increase the stress on animals, and digestive disorders become more frequent as a result of imbalance in the intestinal microbiota and generate a reduction in the natural resistance against contamination or pathogen colonization (James et al. 1984; Savage 1987; Fuller 1992; Mulder et al. 1997).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe F, Ishibashi N, Shimamura S (1995) Effect of administration of Bifidobacteria and lactic acid bacteria to newborn calves and piglets. J Dairy Sci 78:2838–2846

    Article  CAS  PubMed  Google Scholar 

  • Abdala AA, Zimmerman G, Calvinho LF et al (2001) Evaluación de la eficacia de un probiótico incorporado a un sustituto lácteo y a leche entera, en la crianza de terneros. Rev Med Vet 83:196–198

    Google Scholar 

  • Abu-Tarboush HM, Al-Saiady MY, Keir El-Din AH (1996) Evaluation of diet containing Lactobacilli on performance, fecal coliform, and Lactobacilli of young milk calves. Anim Feed Sci Technol 57:39–49

    Article  Google Scholar 

  • Adams MC, Luoa J, Rayward D et al (2008) Selection of a novel direct-fed microbial to enhance weight gain in intensively reared calves. Anim Feed Sci Technol 145:41–52

    Article  Google Scholar 

  • Apás AL, Arena ME, Draksler D et al (2008) Utilization of sugarcane industrial residues as animal food and probiotic medium. J Biosci Bioeng 106:363–367

    Article  PubMed  Google Scholar 

  • Barrington GM, Gay JM, Evermann JF (2002) Biosecurity for neonatal gastrointestinal diseases. Vet Clin Food Anim Pract 18:7–34

    Article  Google Scholar 

  • Berg RD (1995) Bacterial translocation from the gastrointestinal tract. Trends Microbiol 3:149–154

    Article  CAS  PubMed  Google Scholar 

  • Blum S, Álvarez S, Haller D et al (1999) Intestinal microbiota and the interaction with immunocompetent cells. Anton Leeuw 76:199–205

    Article  CAS  Google Scholar 

  • Brashears MM, Galyean ML, Loneragan GH et al (2003) Prevalence of Escherichia coli O157:H7 and performance by beef feedlot cattle given Lactobacillus direct-fed microbials. J Food Protect 66:748–754

    Article  CAS  Google Scholar 

  • Callaway TR, Anderson RC, Edrington TS et al (2003) Preslaughter intervention strategies to reduce food-borne pathogens in food animals. J Anim Sci 81(Suppl. 2):E17–E23

    Google Scholar 

  • Casey PG, Gardiner GE, Casey G et al (2007) A five-strain probiotic combination reduces pathogen shedding and alleviates disease signs in pigs challenged with Salmonella enterica Serovar Typhimurium. Appl Environ Microbiol 73:1858–1863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Champagne CP, Gardner NJ (2001) The effect of protective ingredients on the survival of immobilized cells of Streptococcus thermophilus to air and freeze-drying. Electron J Biotechnol 3:146–152

    Google Scholar 

  • Collier CT, Smiricky-Tjardes MR, Albin DM et al (2003) Molecular ecological analysis of porcine ileal microbiota responses to antimicrobial growth promoters. J Anim Sci 81:3035–3045

    Article  CAS  PubMed  Google Scholar 

  • Crittenden R, Weerakkody R, Sanguansri L et al (2006) Synbiotic microcapsules that enhance microbial viability during nonrefrigerated storage and gastrointestinal transit. Appl Environ Microbiol 72:2280–2282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daeschel MA (1993) Applications and interactions of bacteriocin from lactic acid bacteria in food and beverages. In: Hoover DG, Stenson LR (eds) Bacteriocins of lactic acid bacteria. Academic, Nueva York, pp 63–70

    Chapter  Google Scholar 

  • Dembezynski R, Jankowski T (2002) Growth characteristics and acidifying activity of Lactobacillus rhamnosus in alginate/starch liquid-core capsules. Enzyme Microb Technol 31:111–115

    Article  Google Scholar 

  • Diez-Gonzalez F (2007) Applications of bacteriocins in livestock. Curr Issues Intest Microbiol 8:15–24

    CAS  PubMed  Google Scholar 

  • Doleyres Y, Lacroix C (2005) Technologies with free and immobilised cells for probiotic bifidobacteria production and protection. Int Dairy J 15:973–988

    Article  CAS  Google Scholar 

  • Drago S, Soto LP, Frizzo LS et al (2006) Efecto de plasma bovino hidrolizado sobre el crecimiento de Lactobacillus salivarius DSPV 315T. II Simposio Internacional de Bacterias Lácticas. Primer encuentro Red BAL Argentina, San Miguel de Tucumán, 11 al 13 de octubre. p 67

    Google Scholar 

  • Dunne C, O’Mahony L, Murphy L et al (2001) In vitro selection criteria for probiotic bacteria of human origin: correlation with in vivo findings. Am J Clin Nutr 73(suppl):386S–392S

    Article  CAS  PubMed  Google Scholar 

  • FAO/WHO (2001) Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Report of a Joint FAO/WHO Expert Consultation. Food and agriculture organization of the United Nations and World Health Organization. Córdoba, Argentina

    Google Scholar 

  • Fitzpatrick JJ, O’Keeffe U (2001) Influence of whey protein hydrolysate addition to whey permeate batch fermentations for producing lactic acid. Process Biochem 37:183–186

    Article  CAS  Google Scholar 

  • Frizzo LS, Peralta C, Zbrun V et al (2005) Respuesta de ratones inoculados con bacterias lácticas de origen bovino a un desafío con Salmonella dublin. FAVE Secc Cienc Vet 4:41–53

    Google Scholar 

  • Frizzo LS, Soto LP, Bertozzi E et al (2006) Evaluación in vitro de las capacidades probióticas microbianas orientadas al diseño de inóculos probióticos multiespecie para ser utilizados en la crianza de terneros. FAVE Secc Cienc Vet 5:69–81

    Google Scholar 

  • Frizzo LS, Bertozzi E, Soto LP et al (2010a) Studies on translocation, scute oral toxicity and intestinal colonization of potentially probiotic lactic acid bacteria administered during calf rearing. Livest Sci 128:28–35

    Article  Google Scholar 

  • Frizzo LS, Soto LP, Zbrun MV et al (2010b) Lactic acid bacteria to improve growth performance in young calves fed milk replacer and spray-dried whey powder. Anim Feed Sci Technol 157:159–167

    Article  CAS  Google Scholar 

  • Frizzo LS, Soto LP, Zbrun MV et al (2011a) Effect of lactic acid bacteria and lactose on growth performance and intestinal microbial balance of artificially reared calves. Livest Sci 140:246–252

    Article  Google Scholar 

  • Frizzo LS, Soto LP, Bertozzi E et al (2011b) Intestinal populations of Lactobacilli and coliforms after in vivo Salmonella dublin challenge and their relationship with microbial translocation in calves supplemented with lactic acid bacteria and lactose. Anim Feed Sci Technol 170:12–20

    Article  CAS  Google Scholar 

  • Frizzo LS, Zbrun MV, Soto LP et al (2011c) Effect of probiotics on the growth performance in young calves: a meta-analysis of randomized controlled trials. Anim Feed Sci Technol 169:147–156

    Article  CAS  Google Scholar 

  • Frizzo LS, Zbrun MV, Soto LP et al (2012) Pathogen translocation and histopathological lesions in an experimental model of Salmonella Dublin infection in calves receiving lactic acid bacteria and lactose supplements. J Vet Sci 13(3):261–270

    Article  PubMed  PubMed Central  Google Scholar 

  • Frizzo LS, Astesana DM, Soto LP et al (2013) La seguridad en la cadena agroalimentaria de la carne: problemáticas, estrategias y posibles soluciones pre-faena. Revista Fave Ciencias Agrarias 12:7–26

    Google Scholar 

  • Fuller R (1989) Probiotics in man and animals. J Appl Bacteriol 66:365–378

    Article  CAS  PubMed  Google Scholar 

  • Fuller R (1992) History and development of probiotics. In: Fuller R (ed) Probiotics: the scientific basis. Chapman & Hall, London, pp 1–8

    Chapter  Google Scholar 

  • Fuller R (2006) Reasons for the apparent variation in the probiotic response. Biologia 61:751–754

    Google Scholar 

  • Gardiner GE, Casey PG, Casey G et al (2004) Relative ability of orally administered Lactobacillus murinus to predominate and persist in the porcine gastrointestinal tract. Appl Environ Microbiol 70:1895–1906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gill HS, Shu Q, Lin H et al (2001) Protection against translocating Salmonella typhimurium infection in mice by feeding the immuno-enhancing probiotic Lactobacillus rhamnosus strain HN001. Med Microbiol Immunol 190:97–104

    CAS  PubMed  Google Scholar 

  • Hill TM, Bateman HG II, Aldrich JM et al (2008) Oligosaccharides for dairy calves. Prof Anim Sci 24:460–464

    Google Scholar 

  • Hill C, Guarner F, Reid G et al (2014) Expert consensus document: the International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11:506–514

    Article  PubMed  Google Scholar 

  • James RE, McGilliard ML, Hartman DA (1984) Calf mortality in Virginia dairy herd improvements herds. J Dairy Sci 67:908–918

    Article  CAS  PubMed  Google Scholar 

  • Kurzak P, Ehrmann MA, Vogel R (1998) Diversity of lactic acid bacteria associated with ducks. Syst Appl Microbiol 21:588–592

    Article  CAS  PubMed  Google Scholar 

  • Klaenhammer TR (1988) Bacteriocins of lactic acid bacteria. Biochimie 70:337–349

    Article  CAS  PubMed  Google Scholar 

  • Kwon S, Lee PC, Lee EG et al (2000) Production of lactic acid by Lactobacillus rhamnosus with vitamin-supplemented soybean hydrolizate. Enzym Microb Technol 26:209–215

    Article  CAS  Google Scholar 

  • Lee K, Heo T (2000) Survival of Bifidobacterium longum immobilized in calcium alginate beads in simulated gastric juices and bile salt solution. Appl Environ Microbiol 66:869–873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lian W, Hsiao H, Chou C (2003) Viability of microencapsulated bifidobacteria in simulated gastric juice and bile solution. J Food Microbiol 86:293–301

    Article  Google Scholar 

  • Locascio M, de Ruiz Holgado AP, Perdigón G et al (2001) Enteric bifidobacteria: isolation from human infants and challenge studies in mice. Can J Microbiol 47:1048–1052

    Article  CAS  PubMed  Google Scholar 

  • Maia OB, Duarte R, Silva AM et al (2001) Evaluation of the components of a commercial probiotic in gnotobiotic mice experimentally challenged with Salmonella enterica subsp. enterica ser. Typhimurium. Vet Microbiol 79:183–189

    Article  CAS  PubMed  Google Scholar 

  • Mallo JJ, Rioperez J, Honrubia P (2010) The addition of Enterococcus faecium to diet improves piglet’s intestinal microbiota and performance. Livest Sci 133:176–178

    Article  Google Scholar 

  • McEwen SA, Fedorka-Cray JF (2002) Antimicrobial use and resistance in animals. Clin Infect Dis 34(Suppl 3):S93–S106

    Article  CAS  PubMed  Google Scholar 

  • Melin L, Jensen-Waern M, Johannisson A et al (1997) Development of selected faecal microfloras and of phagocytic and killing capacity of neutrophils in young pigs. Vet Microbiol 54:287–300

    Article  CAS  PubMed  Google Scholar 

  • Millemann Y (2009) Diagnosis of neonatal calf diarrhea. Revue Méd Vét 160(8-9):404–409

    Google Scholar 

  • Morrill JL, Morrill ZJM, Feyerherm AM et al (1995) Plasma proteins and a probiotic as ingredients in milk replacer. J Dairy Sci 78:902–907

    Article  CAS  PubMed  Google Scholar 

  • Morrison SJ, Dawson S, Carson AF (2010) The effects of mannan oligosaccharide and Streptococcus faecium addition to milk replacer on calf health and performance. Livest Sci 131:292–296

    Article  Google Scholar 

  • Moura LN, Neumann E, Vieira LQ et al (2001) Protection by Lactobacillus acidophilus UFV-H2B20 against experimental oral infection with Salmonella enterica subsp. enterica ser. Typhimurium in gnotobiotic and conventional mice. Braz J Microbiol 32:66–69

    Article  Google Scholar 

  • Mulder RW, Havenaar R, Huis in 't Veld JH (1997) Intervention strategies: the use of probiotics and competitive exclusion microbiotas against contamination with pathogens in pigs and poultry. In: Fuller R (ed) Probiotics: 2. Application and practical aspects. Chapman & Hall, London, pp 187–207

    Google Scholar 

  • Muthukumarasamy P, Wojtas PA, Holley RA (2006) Stability of Lactobacillus reuteri in different types of microcapsules. J Food Sci 71:20–24

    Article  Google Scholar 

  • Nargeskhani A, Dabiri N, Esmaeilkhanian S et al (2010) Effects of mannanoligosaccharide-β Glucan or antibiotics on health and performance of dairy calves. Anim Nutr Feed Technol 10:29–36

    Google Scholar 

  • Nousiainen J, Setälä J (1998) Lactic acid bacteria as animal probiotics. In: Salminem S, Von Wright A (eds) Lactic acid bacteria: microbiology and functional aspects. Marcel Dekker, New York, pp 437–473

    Google Scholar 

  • O’Mahony D, Barry Murphy K, MacSharry J et al (2009) Portrait of a canine probiotic Bifidobacterium-from gut to gut. Vet Microbiol 139:106–112

    Article  PubMed  Google Scholar 

  • Parker D (1990) Manipulation of the functional activity of gut by dietary and other means (antibiotics/probiotics). J Nutr 60:639–648

    Article  Google Scholar 

  • Pascual M, Hugas M, Badiola JI et al (1999) Lactobacillus salivarius CTC2197 prevents Salmonella enteritidis colonization in chickens. Appl Environ Microbiol 65:4981–4986

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez Guerra N, Fajardo Bernárdez P, Méndez J et al (2007) Production of four potentially probiotic lactic acid bacteria and their evaluation as feed additives for weaned piglets. Anim Feed Sci Tech 134:89–107

    Article  Google Scholar 

  • Picot A, Lacroix C (2004) Encapsulation of bifidobacteria in whey protein-based microcapsules and survival in simulated gastrointestinal conditions and in yoghurt. Int Dairy J 14:505–515

    Article  CAS  Google Scholar 

  • Reid G, Friendship R (2002) Alternatives to antibiotic use: probiotics for the gut. Anim Biotechnol 13:97–112

    Article  PubMed  Google Scholar 

  • Remiger A, Eijsink VGH, Ehrmann MA et al (1999) Purification and partial amino acid sequence of plantaricin 1.25 α and 1.25 β two bacteriocins produced by Lactobacillus plantarum TMW 1.25. J Appl Microbiol 86:1053–1058

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez Armesto R, Peralta C, Ochoteco M et al (1996) Salmonelosis septicémica en terneros lactantes: nueva presentación para una vieja enfermedad. Primera parte. Revista Therios 25:251–260

    Google Scholar 

  • Rodrigues LR, Teixeira JA, Oliveira R (2006) Low-cost fermentative medium for biosurfactant production by probiotic bacteria. Biochem Eng J 32:135–142

    Article  CAS  Google Scholar 

  • Rosmini MR, Sequeira GJ, Guerrero-Legarreta I et al (2004) Producción de probióticos para animales de abasto: importancia del uso de la microbiota intestinal indígena. Rev Mex Ing Quím 3:181–191

    CAS  Google Scholar 

  • Ross R, Galvin M, McAuliffe O et al (1999) Developing applications for lactococcal bacteriocins. Anton Leeuw 76:337–346

    Article  CAS  Google Scholar 

  • Ross GR, Gusils C, Oliszewski R et al (2010) Effects of probiotic administration in swine. J Biosci Bioeng (6):545–549

    Google Scholar 

  • Saarela M, Mogensen G, Fonden R et al (2000) Probiotic bacteria: safety functional and technological properties. J Biotechnol 84:197–215

    Article  CAS  PubMed  Google Scholar 

  • Salminen S, Deighton MA, Benno Y et al (1998) Lactic acid bacteria in health and disease. In: Salminen S, Von Wright A (eds) Lactic acid bacteria: microbiology and functional aspect. Marcel Dekker, New York, pp 211–253

    Google Scholar 

  • Santini C, Baffoni L, Gaggia F et al (2010) Characterization of probiotic strains: an application as feed additives in poultry against Campylobacter jejuni. Int J Food Microbiol 141:S98–S108

    Article  PubMed  Google Scholar 

  • Savage DC (1987) Factors influencing biocontrol of bacterial pathogens in the intestine. Food Technol 41:82–87

    Google Scholar 

  • Saxelin M, Pessi T, Salminen S (1995) Fecal recovery following oral administration of Lactobacillus strain GG (ATCC 53103) in gelatine capsules to healthy volunteers. Int J Food Microbiol 25:199–203

    Article  CAS  PubMed  Google Scholar 

  • Schillinger U, Lucke FK (1989) Antimicrobial activity of Lactobacillus sake isolated from meat. Appl Environ Microbiol 55:1901–1906

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider R, Rosmini MR, Hermann M et al (2004) Identificación de bacterias lácticas componentes de la microbiota típica de los terneros criados en condiciones artificiales. Revista FAVE Ciencias Vet 3:7–15

    Google Scholar 

  • Schwarz S, Kehrenberg C, Walsh TR (2001) Use of antimicrobial agents in veterinary medicine and food animal production. Int J Antimicrob Agents 17:431–437

    Article  CAS  PubMed  Google Scholar 

  • Shu Q, Gill HS (2002) Immune protection mediated by the probiotic Lactobacillus rhamnosus HN001 (DR20™) against Escherichia coli O157:H7 infection in mice. FEMS Immun Med Microbiol 34:59–64

    CAS  Google Scholar 

  • Signorini ML, Soto LP, Zbrun MV et al (2012) Impact of probiotic administration on health and faecal microbiota in young calves: a meta-analysis of randomized controlled trials of lactic acid bacteria. Res Vet Sci 93:250–258

    Article  CAS  PubMed  Google Scholar 

  • Smiricky-Tjardes MR, Grieshop CM, Flickinger EA et al (2003) Dietary galactooligosaccharides affect ileal and total tract nutrient digestibility, ileal and fecal bacterial concentrations, and ileal fermentative characteristics of growing pigs. J Anim Sci 81:2535–2545

    Article  CAS  PubMed  Google Scholar 

  • Soto LP, Drago S, Frizzo LS et al (2006) Efecto de hidrolizados proteicos sobre el crecimiento de Lactobacillus casei DSPV 318T. II Simposio Internacional de Bacterias Lácticas. Primer encuentro Red BAL Argentina, San Miguel de Tucumán, 11 al 13 de octubre. p 131

    Google Scholar 

  • Soto LP, Frizzo LS, Bertozzi E et al (2009) Milk evaluation as growth and cold preservation medium of a probiotic inoculum for young calves. J Anim Vet Adv 8:1353–1360

    Google Scholar 

  • Soto LP, Frizzo LS, Avataneo E et al (2011) Design of macrocapsules to improve bacterial viability and supplementation with a probiotic for young calves. Anim Feed Sci Technol 165:176–183

    Article  CAS  Google Scholar 

  • Stephens TP, Stanford K, Rode LM et al (2010) Effect of a direct-fed microbial on animal performance, carcass characteristics and the shedding of Escherichia coli O157 by feedlot cattle. Anim Feed Sci Technol 158:65–72

    Article  Google Scholar 

  • Terré M, Calvo MA, Adelantado C et al (2007) Effects of mannan oligosaccharides on performance and microorganism fecal counts of calves following an enhanced-growth feeding program. Anim Feed Sci Technol 137:115–125

    Article  Google Scholar 

  • Timmerman HM, Koning CJM, Mulder L et al (2004) Monostrain, multistrain and multispecies probiotics—a comparison of functionality and efficacy. Int J Food Microbiol 96:219–233

    Article  CAS  PubMed  Google Scholar 

  • Timmerman HM, Mulder L, Everts H et al (2005) Health and growth of veal calves fed milk replacers with or without probiotics. J Dairy Sci 88:2154–2165

    Article  CAS  PubMed  Google Scholar 

  • Vassalo M, Fialho ET, Oliveira AIG et al (1997) Probióticos para leitões dos 10 aos 30 kg de peso vivo. Rev Soc Bras Zoot 26:31–138

    Google Scholar 

  • Verdonk JMAJ, Shim SB, van Leeuwen P et al (2005) Application of inulin-type fructans in animal feed and pet food. Brit J Nut 93(Suppl. 1):S125–S138

    Article  CAS  Google Scholar 

  • Vinderola CG, Bailo N, Reinheimer JA (2000) Survival of probiotic microflora in Argentinian yogurts during refrigerated storage. Food Res Int 33:97–102

    Article  CAS  Google Scholar 

  • Walker WA, Duffy LC (1998) Diet and bacterial colonization: role of probiotics and prebiotics. J Nutr Biochem 9:668–675

    Article  CAS  Google Scholar 

  • Weinbreck F, Bodnár I, Marco ML (2010) Can encapsulation lengthen the shelf-life of probiotic bacteria in dry products? Int J Food Microbiol 136:364–367

    Article  CAS  PubMed  Google Scholar 

  • Zhou JS, Shu Q, Rutherfurd KJ et al (2000) Acute oral toxicity and bacterial translocation studies on potentially probiotic strains of lactic acid bacteria. Food Chem Toxicol 38:153–161

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Raúl Rosmini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Frizzo, L.S., Signorini, M.L., Rosmini, M.R. (2018). Probiotics and Prebiotics for the Health of Cattle. In: Di Gioia, D., Biavati, B. (eds) Probiotics and Prebiotics in Animal Health and Food Safety. Springer, Cham. https://doi.org/10.1007/978-3-319-71950-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71950-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71948-1

  • Online ISBN: 978-3-319-71950-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics