Skip to main content

Paraprobiotics as Potential Agents for Improving Animal Health

  • Chapter
  • First Online:
Probiotics and Prebiotics in Animal Health and Food Safety

Abstract

Lactobacillus, Bifidobacterium, Lactococcus, Streptococcus, Enterococcus, Saccharomyces, Bacillus, Brevibacillus, and Sporolactobacillus comprise the main genera used as probiotic microorganisms. Few strains within these genera have been shown to confer specific health benefits to the hosts when administered, as live microorganisms, in adequate amounts. Despite this, recently the ability of “dead” or “inactivated” probiotic cells also to provide health benefits to hosts has been reported. “Dead” or “inactivated” probiotics are nonviable microbial cells, which when administered in appropriate amounts and frequency are able to confer benefits on human or animal health. The use of dead probiotic bacteria to confer health benefits to hosts offers a series of advantages when compared with live microorganisms. In this chapter, a general description of the dead probiotics will be presented, followed by explanation of the main probiotics and their use in animal production. Finally, studies that correlate live and dead probiotics with the animal health will be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelrahman W, Mohnl M, Teichmann K et al (2014) Comparative evaluation of probiotic and salinomycin effects on performance and coccidiosis control in broiler chickens. Poult Sci 93:3002–3008

    Article  CAS  PubMed  Google Scholar 

  • Almada CN, Almada CN, Martinez RCR et al (2015) Characterization of the intestinal microbiota and its interaction with probiotics and health impacts. Appl Microbiol Biotechnol 99:4175–4199

    Article  PubMed  CAS  Google Scholar 

  • Al-Salami H, Butt G, Fawcett JP et al (2008) Probiotic treatment reduces blood glucose levels and increases systemic absorption of gliclazide in diabetic rats. Eur J Drug Metab Pharmacokinet 33:101–106

    Article  CAS  PubMed  Google Scholar 

  • Altmeyer S, Kröger S, Vahjen W et al (2014) Impact of a probiotic Bacillus Cereus strain on the jejunal epithelial barrier and on the NKG2D expressing immune cells during the weaning phase of piglets. Vet Immunol Immunopathol 161:57–65

    Article  CAS  PubMed  Google Scholar 

  • Amit-Romach E, Uni Z, Reifen R (2010) Multistep mechanism of probiotic bacterium, the effect on innate immune system. Mol Nutr Food Res 54:277–284

    Article  CAS  PubMed  Google Scholar 

  • Ananta E, Knorr D (2009) Comparison of inactivation pathways of thermal or high pressure inactivated Lactobacillus rhamnosus ATCC 53103 by flow cytometry analysis. Food Microbiol 26:542–546

    Article  CAS  PubMed  Google Scholar 

  • Andriantsoanirina V, Allano S, Butel MJ et al (2013) Tolerance of Bifidobacterium human isolates to bile, acid and oxygen. Anaerobe 21:39–42

    Article  CAS  PubMed  Google Scholar 

  • Bautista-Garfias CR, Ixta-Rodríguez O, Martínez-Gómez F et al (2001) Effect of viable or dead Lactobacillus casei organisms administered orally to mice on resistance against Trichinella spiralis infection. Parasite 8:S226–S228

    Article  CAS  PubMed  Google Scholar 

  • Benato L, Hastie P, O’Shaughnessy P et al (2014) Effects of probiotic Enterococcus faecium and Saccharomyces cerevisiae on the faecal microflora of pet rabbits. J Small Anim Pract 55:442–446

    Article  CAS  PubMed  Google Scholar 

  • Bermudez-Brito M, Plaza-Díaz J, Muñoz-Quezada S et al (2012) Probiotic mechanisms of action. Ann Nutr Metab 61:160–174

    Article  CAS  PubMed  Google Scholar 

  • Bernardeau M, Paul J, Gueguen M (2002) Safety and efficacy of probiotic lactobacilli in promoting growth in post-weaning Swiss mice. Int J Food Microbiol 77:19–27

    Article  PubMed  Google Scholar 

  • Biswas G, Korenaga H, Nagamine RT et al (2013) Cytokine responses in the Japanese pufferfish (Takifugu rubripes) head kidney cells induced with heat-killed probiotics isolated from the Mongolian dairy products. Fish Shellfish Immunol 34:1170–1177

    Article  CAS  PubMed  Google Scholar 

  • Böhmer BM, Kramer W, Roth-Maier DA (2006) Dietary probiotic supplementation and resulting effects on performance, health status, and microbial characteristics of primiparous sows. J Anim Physiol Anim Nutr 90:309–315

    Article  CAS  Google Scholar 

  • Borchers AT, Selmi C, Meyers FJ et al (2009) Probiotics and immunity. J Gastroenterol 44:26–46

    Article  PubMed  Google Scholar 

  • Bouchard DS, Rault L, Berkova N et al (2013) Inhibition of Staphylococcus aureus invasion into bovine mammary epithelial cells by contact with live Lactobacillus casei. Appl Environ Microbiol 79:877–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Busanello M, Pozza MSS, Pozza PC et al (2015) Probiotics: viable and inactivated cells on the performance, microflora and blood parameters of piglets. Rev Bras Saude Prod Anim 16:387–396

    Article  CAS  Google Scholar 

  • Castillo NA, LeBlanc AM, Galdeano CM et al (2012) Probiotics: an alternative strategy for combating salmonellosis: immune mechanisms involved. Food Res Int 45:831–841

    Article  Google Scholar 

  • Center for Veterinary Medicine, Food and Drug Administration (2012) The judicious use of medically important antimicrobial drugs in food-producing animals. Guidance for Industry #209, 1–26, http://www.fda.gov/downloads/AnimalVeterinary/GuidanceComplianceEnforcement/GuidanceforIndustry/UCM216936.pdf

  • Choi HJ, Shin MS, Lee SM et al (2012) Immunomodulatory properties of Enterococcus faecium JWS 833 isolated from duck intestinal tract and suppression of Listeria monocytogenes infection. Microbiol Immunol 56:613–620

    Article  CAS  PubMed  Google Scholar 

  • Chuang L, Wu K-G, Pai C et al (2007) Heat-killed cells of lactobacilli skew the immune response toward T helper 1 polarization in mouse splenocytes and dendritic cell-treated T cells. J Agr Food Chem 55:11080–11086

    Article  CAS  Google Scholar 

  • Cutting SM (2011) Bacillus probiotics. Food Microbiol 28:214–220

    Article  PubMed  Google Scholar 

  • Da Silva Almeida AP, Avi CM, Barbisan LF et al (2015) Yacon (Smallanthus Sonchifolius) and Lactobacillus acidophilus CRL 1014 reduce the early phases of colon carcinogenesis in male Wistar rats. Food Res Int 74:48–54

    Article  PubMed  CAS  Google Scholar 

  • De Gregorio PR, JuárezTomás MS, LecceseTerraf MC et al (2015) Preventive effect of Lactobacillus reuteri CRL1324 on Group B Streptococcus vaginal colonization in an experimental mouse model. J Appl Microbiol 118:1034–1047

    Article  PubMed  CAS  Google Scholar 

  • Dehaghani PG, Baboli MJ, Moghadam AT et al (2015) Effect of synbiotic dietary supplementation on survival, growth performance, and digestive enzyme activities of common carp (Cyprinuscarpio) fingerlings. Czech J Anim Sci 60:224–232

    Article  CAS  Google Scholar 

  • Delgado R, Latorre JD, Vicuña E et al (2014) Glycerol supplementation enhances the protective effect of dietary FloraMax-B11 against Salmonella Enteritidis colonization in neonate broiler chickens. Poult Sci 93:2363–2369

    Article  CAS  PubMed  Google Scholar 

  • Di Giancamillo A, Vitari F, Savoini G et al (2008) Effects of orally administered probiotic Pediococcus acidilactici on the small and large intestine of weaning piglets. A qualitative and quantitative micro-anatomical study. Histol Histopathol 23:651–664

    PubMed  Google Scholar 

  • Duncker SC, Kamiya T, Wang L et al (2011) Probiotic Lactobacillus reuteri alleviates the response to gastric distension in rats. J Nutr 141:1813–1818

    Article  CAS  PubMed  Google Scholar 

  • Fakhry S, Sorrentini I, Ricca E et al (2008) Characterization of spore forming Bacilli isolated from the human gastrointestinal tract. J Appl Microbiol 105:2178–2186

    Article  CAS  PubMed  Google Scholar 

  • Fooladi AAI, Yazdi MH, Pourmand MR et al (2015) Th1 cytokine production induced by Lactobacillus acidophilus in BALB/c mice bearing transplanted breast tumor. Jundishapur J Microbiol 8:1–5

    Google Scholar 

  • Forsythe P, Inman MD, Bienenstock J (2007) Oral treatment with live Lactobacillus reuteri inhibits the allergic airway response in mice. Am J Respir Crit Care Med 175:561–569

    Article  PubMed  Google Scholar 

  • Gaggìa F, Mattarelli P, Biavati B (2010) Probiotics and prebiotics in animal feeding for safe food production. Int J Food Microbiol 141(Suppl 1):S15–S28. https://doi.org/10.1016/j.ijfoodmicro.2010.02.031

    Article  PubMed  Google Scholar 

  • Generoso SV, Viana ML, Santos RG et al (2011) Protection against increased intestinal permeability and bacterial translocation induced by intestinal obstruction in mice treated with viable and heat-killed Saccharomyces boulardii. Eur J Nutr 50:261–269

    Article  PubMed  Google Scholar 

  • Ghosh S, Sinha A, Sahu C (2007) Effect of probiotic on reproductive performance in female livebearing ornamental fish. Aquac Res 38:518–526

    Article  Google Scholar 

  • Good M, Sodhi CP, Ozolek JA et al (2014) Lactobacillus rhamnosus HN001 decreases the severity of necrotizing enterocolitis in neonatal mice and preterm piglets: evidence in mice for a role of TLR9. Am J Physiol Gastrointest Liver Physiol 306:G1021–G1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grzeskowiak K, Collado MC, Beasley S et al (2014) Pathogen exclusion properties of canine probiotics are influenced by the growth media and physical treatments simulating industrial processes. J Appl Microbiol 116:1308–1314

    Article  CAS  PubMed  Google Scholar 

  • Herbel SR, Vahjen W, Wiele LH et al (2013) Timely approaches to identify probiotic speciesof the genus Lactobacillus. Gut Path 5:1–13

    Article  CAS  Google Scholar 

  • Hill C, Guarner F, Reid G et al (2014) Expert consensus document: The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepathol 11:506–514

    Article  Google Scholar 

  • Holzapfel WH, Haberer P, Geisen R et al (2001) Taxonomy and important features of probiotic microorganisms in food and nutrition. Am J Clin Nutr 73:365S–373S

    Article  CAS  PubMed  Google Scholar 

  • Hong HA, Duc LH, Cutting SM (2005) The use of bacterial spore formers as probiotics. FEMS Microbiol Rev 29:813–835

    Article  CAS  PubMed  Google Scholar 

  • Hong HA, Huang JM, Khaneja R et al (2008) The safety of Bacillus subtilis and Bacillus indicus as food probiotics. J Appl Microbiol 105:510–520

    Article  CAS  PubMed  Google Scholar 

  • Hong HA, Khaneja R, Tama NMK et al (2009) Bacillus subtilis isolated from the human gastrointestinal tract. Res Microbiol 160:134–143

    Article  CAS  PubMed  Google Scholar 

  • Hong H-J, Kim E, Cho D et al (2010) Differential suppression of heat-killed lactobacilli isolated from kimchi, a Korean traditional food, on airway hyper-responsiveness in mice. J Clin Immunol 30:449–458

    Article  PubMed  Google Scholar 

  • Hougee S, Vriesema AJ, Wijering SC et al (2010) Oral treatment with probiotics reduces allergic symptoms in ovalbumin-sensitized mice: a bacterial strain comparative study. Int Arch Allergy Immunol 151:107–117

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Dun Y, Li S et al (2015) Dietary Enterococcus faecalis LAB31 improves growth performance, reduces diarrhea, and increases fecal Lactobacillus number of weaned piglets. PLoS One 10:e0116635

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang Y, Wang J, Cheng Y et al (2010) The hypocholesterolaemic effects of Lactobacillus acidophilus American type culture collection 4356 in rats are mediated by the down-regulation of Niemann-Pick C1-like 1. Br J Nutr 104:807–812

    Article  CAS  PubMed  Google Scholar 

  • Hung AT, Lin SY, Yang TY et al (2012) Effects of Bacillus coagulans ATCC 7050 on growth performance, intestinal morphology, and microflora composition in broiler chickens. Anim Prod Sci 52:874–879

    Article  CAS  Google Scholar 

  • Ihara Y, Hyodo H, Sukegawa S et al (2013) Isolation, characterization, and effect of administration in vivo, a novel probiotic strain from pig feces. Anim Sci J 84:434–441

    Article  PubMed  Google Scholar 

  • Im E, Choi YJ, Pothoulakis C et al (2009) Bacillus polyfermenticus ameliorates colonic inflammation by promoting cytoprotective effects in colitic mice. J Nutr 139:1848–1854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iraqi EKG, Fayed RH (2012) Effect of yeast as feed supplement on behavioural and productive performance of broiler chickens. Life Sci J 9:4026–4031

    Google Scholar 

  • Irianto A, Austin B (2003) Use of dead probiotic cells to control furunculosis in rainbow trout, Oncorhynchus mykiss (Walbaum). J Fish Dis 26:59–62

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa H, Kutsukake E, Fukui T et al (2010) Oral administration of heat-killed Lactobacillus plantarum strain b240 protected mice against Salmonella enterica serovar Typhimurium. Biosci Biotechnol Biochem 74:1338–1342

    Article  CAS  PubMed  Google Scholar 

  • Jeong J-J, Woo J-Y, Ahn Y-T et al (2015) The probiotic mixture IRT5 ameliorates age-dependent colitis in rats. Int Immunopharmacol 26:416–422

    Article  CAS  PubMed  Google Scholar 

  • Justino PFC, Melo LFM, Nogueira AF et al (2014) Treatment with Saccharomyces boulardii reduces the inflammation and dysfunction of the gastrointestinal tract in 5-fluorouracil-induced intestinal mucositis in mice. Br J Nutr 111(9):1611–1621

    Article  CAS  PubMed  Google Scholar 

  • Justino PFC, Melo LFM, Nogueira AF et al (2015) Regulatory role of Lactobacillus acidophilus on inflammation and gastric dysmotility in intestinal mucositis induced by 5-fluorouracil in mice. Cancer Chemother Pharmacol 75:559–567

    Article  PubMed  Google Scholar 

  • Kamiya T, Wang L, Forsythe P et al (2006) Inhibitory effects of Lactobacillus reuteri on visceral pain induced by colorectal distension in Sprague-Dawley rats. Gut 55:191–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kantas D, Papatsiros VG, Tassis PD et al (2015) A feed additive containing Bacillus toyonensis (Toyocerin®) protects against enteric pathogens in postweaning piglets. J Appl Microbiol 118:727–738

    Article  CAS  PubMed  Google Scholar 

  • Kawase M, He F, Kubota A et al (2010) Oral administration of lactobacilli from human intestinal tract protects mice against influenza virus infection. Lett Appl Microbiol 51:6–10

    CAS  PubMed  Google Scholar 

  • Kawase M, He F, Kubota A et al (2012) Heat-killed Lactobacillus gasseri TMC0356 protects mice against influenza virus infection by stimulating gut and respiratory immune responses. FEMS Immunol Med Microbiol 64:280–288

    Article  CAS  PubMed  Google Scholar 

  • Khan AA, Khurshid M, Khan S et al (2013) Gut microbiota and probiotics: current status and their role in cancer therapeutics. Drug Dev Res 74:365–375

    Article  CAS  Google Scholar 

  • Kim KM, Jung TS, Ok S et al (2011) In vitro characterization study of Bacillus mojavensis KJS-3 for a potential probiotic. Food Sci Biotechnol 20:1155–1159

    Article  Google Scholar 

  • Kim J-Y, Park B-K, Park H-J et al (2013a) Atopic dermatitis-mitigating effects of new Lactobacillus strain, Lactobacillus sakei probio 65 isolated from Kimchi. J Appl Microbiol 115:517–526

    Article  CAS  PubMed  Google Scholar 

  • Kim M, Yoon Y, Seo J et al (2013b) A study on the prevention of Salmonella infection by using the aggregation characteristics of lactic acid bacteria. Toxicol Res 29:129–135

    Article  PubMed  PubMed Central  Google Scholar 

  • Kimoto-Nira H, Suzuki C, Kobayashi M et al (2007) Anti-ageing effect of a lactococcal strain: analysis using senescence-accelerated mice. Br J Nutr 98:1178–1186

    Article  CAS  PubMed  Google Scholar 

  • Kritas SK, Govaris A, Christodoulopoulos G et al (2006) Effect of Bacillus licheniformis and Bacillus subtilis supplementation of ewe’s feed on sheep milk production and young lamb mortality. J Vet Med Ser A Physiol Pathol Clin Med 53:170–173

    Article  CAS  Google Scholar 

  • Kumar CSVS, Reddy KK, Reddy AG et al (2015) Protective effect of Lactobacillus plantarum 21, a probiotic on trinitrobenzenesulfonic acid-induced ulcerative colitis in rats. Int Immunopharmacol 25:504–510

    Article  CAS  Google Scholar 

  • Laudanno O, Vasconcelos L, Catalana J et al (2006) Anti-inflammatory effect of bioflora probiotic administered orally or subcutaneously with live or dead bacteria. Dig Dis Sci 51:2180–2183

    Article  PubMed  Google Scholar 

  • Lazado CC, Caipang CMA (2013) Bacterial viability differentially influences the immunomodulatory capabilities of potential host-derived probiotics in the intestinal epithelial cells of Atlantic cod Gadus morhua. J Appl Microbiol 116:990–998

    Article  PubMed  CAS  Google Scholar 

  • Lee DK, Jang S, Baek EH et al (2009) Lactic acid bacteria affect serum cholesterol levels, harmful fecal enzyme fecal activity, and fecal water content. Lipids Health Dis 8:21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee K-W, Kim DK, Lillehoj HS et al (2015) Immune modulation by Bacillus subtilis-based direct-fed microbials in commercial broiler chickens. Anim Feed Sci Technol 200:76–85

    Article  CAS  Google Scholar 

  • Li N, Russell WM, Douglas-Escobar M et al (2009) Live and heat-killed Lactobacillus rhamnosus GG: effects on proinflammatory and anti-inflammatory cytokines/chemokines in gastrostomy-fed infant rats. Pediatr Res 66:203–207

    Article  CAS  PubMed  Google Scholar 

  • Manaer T, Yu L, Zhang Y et al (2015) Anti-diabetic effects of shubat in type 2 diabetic rats induced by combination of high-glucose-fat diet and low-dose streptozotocin. J Ethnopharmacol 169:269–274

    Article  CAS  PubMed  Google Scholar 

  • Mappley LJ, Tchórzewska MA, Nunez A et al (2013) Oral treatment of chickens with Lactobacillus reuteri LM1 reduces Brachyspirapilosicoli-induced pathology. J Med Microbiol 62:287–296

    Article  CAS  PubMed  Google Scholar 

  • Mathur S, Singh R (2005) Antibiotic resistance in food lactic acid bacteria—a review. Int J Food Microbiol 105:281–295

    Article  CAS  PubMed  Google Scholar 

  • Morais MB, Jacob CMA (2006) The role of probiotics and prebiotics in pediatric practice. J Pediatr 82:S189–S197

    Article  Google Scholar 

  • Nakamura S, Kuda T, An C et al (2012) Inhibitory effects of Leuconostoc mesenteroides 1RM3 isolated from narezushi, a fermented fish with rice, on Listeria monocytogenes infection to CaCo-2 cells and A/J mice. Anaerobe 18:19–24

    Article  PubMed  Google Scholar 

  • Nakano MM, Zuber P (1998) Anaerobic growth of a “strict aerobe” (Bacillus subtilis). Annu Rev Microbiol 52:165–190

    Article  CAS  PubMed  Google Scholar 

  • Naqid IA, Owen JP, Maddison BC et al (2015) Prebiotic and probiotic agents enhance antibody-based immune responses to Salmonella Typhimurium infection in pigs. Anim Feed Sci Technol 201:57–65

    Article  CAS  Google Scholar 

  • Newaj-Fyzul A, Adesiyun AA, Mutani A et al (2007) Bacillus subtilis AB1 controls Aeromonas infection in rainbow trout (Oncorhynchus mykiss, Walbaum). J Appl Microbiol 103:1699–1706

    Article  CAS  PubMed  Google Scholar 

  • Nithya V, Halami PM (2013) Evaluation of the probiotic characteristics of Bacillus species isolated from different food sources. Ann Microbiol 63:129–137

    Article  CAS  Google Scholar 

  • Nogueira JCR, Gonçalves MCR (2011) Probióticos—Revisão da Literatura. Rev Bras Ciên Saúde 15:487–492

    Article  Google Scholar 

  • Paik H-D, Park J-S, Park E (2005) Effects of Bacillus polyfermenticus SCD on lipid and antioxidant metabolisms in rats fed a high-fat and high-cholesterol diet. Biol Pharm Bull 28:1270–1274

    Article  CAS  PubMed  Google Scholar 

  • Pan X, Wu T, Song Z et al (2008) Immune responses and enhanced disease resistance in Chinese drum, Miichthys miiuy (Basilewsky), after oral administration of live or dead cells of Clostridium butyrium CB2. J Fish Dis 31:679–686

    Article  CAS  PubMed  Google Scholar 

  • Panigrahi A, Kiron V, Puangkaew J et al (2005) The viability of probiotic bacteria as a factor influencing the immune response in rainbow trout Oncorhynchus mykiss. Aquaculture 243:241–254

    Article  Google Scholar 

  • Patel RM, Denning PW (2013) Therapeutic use of prebiotics, probiotics, and postbiotics to prevent necrotizing enterocolitis. What is the current evidence? Clin Perinatol 40:11–25

    Article  PubMed  PubMed Central  Google Scholar 

  • Raz E, Rachmilewitz D (2005) Inactivated probiotic bacteria and methods of use thereof. Patent n. US20050180962A1, 18 ago

    Google Scholar 

  • Riazi S, Wirawan RE, Badmaev V et al (2009) Characterization of lactosporin, a novel antimicrobial protein produced by Bacillus coagulans ATCC 7050. J Appl Microbiol 106:1370–1377

    Article  CAS  PubMed  Google Scholar 

  • Ripamonti B, Agazzi A, Baldi A et al (2009) Response of Lactobacillus casei BL23 to phenolic compounds. J Appl Microbiol 111:1473–1481

    Google Scholar 

  • Ritzi MM, Abdelrahman W, Mohnl M et al (2012) Effects of probiotics and application methods on performance and response of broiler chickens to an Eimeria challenge. Poult Sci 93(11):2772–2778

    Article  CAS  Google Scholar 

  • Salinas I, Abelli L, Bertoni F et al (2008) Monospecies and multispecies probiotic formulations produce different systemic and local immunostimulatory effects in the gilthead seabream (Sparu saurata L.) Fish Shellfish Immunol 25:114–123

    Article  CAS  PubMed  Google Scholar 

  • Salvetti E, Torriani S, Felis GE (2012) The genus Lactobacillus: a taxonomic update. Probiotics Antimicrob Proteins 4:217–226

    Article  PubMed  Google Scholar 

  • Salyers AA, Gupta A, Wang Y (2004) Human intestinal bacteria as reservoirs for antibiotic resistance genes. Trends Microbiol 12:412–416

    Article  CAS  PubMed  Google Scholar 

  • Sanders ME, Morelli L, Tompkins TA (2003) Sporeformers as human probiotics: Bacillus, Sporolactobacillus, and Brevibacillus. Compr Rev Food Sci Food Saf 2:101–110

    Article  Google Scholar 

  • Sanders ME, Gibson G, Gill HS, Guarner F (2007) Probiotics: their potential to impact human health. CAST 36

    Google Scholar 

  • Sarkar S (2013) Probiotics as functional foods: gut colonization and safety concerns. Nutr Food Sci 43:496–504

    Article  Google Scholar 

  • Segawa S, Wakita Y, Hirata H et al (2008) Oral administration of heat-killed Lactobacillus brevis SBC8803 ameliorates alcoholic liver disease in ethanol-containing diet-fed C57BL/6N mice. Int J Food Microbiol 128:371–377

    Article  CAS  PubMed  Google Scholar 

  • Shin HS, Park SY, Lee DK et al (2010) Hypocholesterolemic effect of sonication-killed Bifidobacterium longum isolated from healthy adult Koreans in high cholesterol fed rats. Arch Pharm Res 33:1425–1431

    Article  CAS  PubMed  Google Scholar 

  • Sukegawa S, Ihara Y, Yuge K et al (2014) Effects of oral administration of heat-killed Enterococcus faecium strain NHRD IHARA in post-weaning piglets. Anim Sci J 85:454–460

    Article  CAS  PubMed  Google Scholar 

  • Sun P, Wang JQ, Zhang HT (2010) Effects of Bacillus subtilis natto on performance and immune function of preweaning calves. J Dairy Sci 93:5851–5855

    Article  CAS  PubMed  Google Scholar 

  • Sun YZ, Yang HL, Ma RL et al (2011) Molecular analysis of autochthonous microbiota along the digestive tract of juvenile grouper Epinephelus coioides following probiotic Bacillus pumilus administration. J Appl Microbiol 110:1093–1103

    Article  CAS  PubMed  Google Scholar 

  • Sun P, Wang JQ, Deng LF (2013) Effects of Bacillus subtilis natto on milk production, rúmen fermentation and ruminal microbiome of dairy cows. Animal 7:216–222

    Article  CAS  PubMed  Google Scholar 

  • Tabuchi M, Ozaki M, Tamura A et al (2003) Antidiabetic effect of Lactobacillus GG in streptozotocin-induced diabetic rats. Biosci Biotechnol Biochem 67:1421–1424

    Article  CAS  PubMed  Google Scholar 

  • Tanzer JM, Thompson A, Lang C (2010) Caries inhibition by and safety of Lactobacillus paracasei DSMZ16671. J Dent Res 89:921–926

    Article  CAS  PubMed  Google Scholar 

  • Taverniti V, Guglielmetti S (2011) The immunomodulatory properties of probiotic microorganisms beyond their viability (ghost probiotics: proposal of paraprobiotic concept). Genes Nutr 6:261–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian F, Zhai Q, Zhao J (2012) Lactobacillus plantarum CCFM8661 alleviates lead toxicity in mice. Biol Trace Elem Res 150:264–271

    Article  PubMed  CAS  Google Scholar 

  • Ueno N, Fujiya M, Segawa S (2011) Heat-killed body of Lactobacillus brevis SBC8803 ameliorates intestinal injury in a murine model of colitis by enhancing the intestinal barrier function. Inflamm Bowel Dis 17:2235–2250

    Article  PubMed  Google Scholar 

  • Ventola H, Lehtoranta L, Madetoja M (2012) Effects of the viability of Lactobacillus rhamnosus GG on rotavirus infection in neonatal rats. World J Gastroenterol 18:5925–5931

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu BQ, Zhang T, Guo LQ et al (2011) Effects of Bacillus subtilis KD1 on broiler intestinal flora. Poult Sci 90:2493–2499

    Article  CAS  PubMed  Google Scholar 

  • Yang H-L, Xia H-Q, Ye Y-D et al (2014) Probiotic Bacillus pumilus SE5 shapes the intestinal microbiota and mucosal immunity in grouper Epinephelus coioides. Dis Aquat Org 111:119–127

    Article  CAS  PubMed  Google Scholar 

  • Yin F, Farzan A, Wang QC et al (2014) Reduction of Salmonella enterica serovar Typhimurium DT104 infection in experimentally challenged weaned pigs fed a Lactobacillus-fermented feed. Foodborne Pathog Dis 11:628–634

    Article  CAS  PubMed  Google Scholar 

  • Youn H-N, Lee D-H, Lee Y-N et al (2012) Intranasal administration of live Lactobacillus species facilitates protection against influenza virus infection in mice. Antivir Res 93:138–143

    Article  CAS  PubMed  Google Scholar 

  • Zhai Q, Wang G, Zhao J et al (2013) Protective effects of Lactobacillus plantarum CCFM8610 against acute cadmium toxicity in mice. Appl Environ Microbiol 79:1508–1515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang JL, Xie QM, Ji J et al (2012) Different combinations of probiotics improve the production performance, egg quality, and immune response of layer hens. Poultry Sci 91:2755–2760

    Article  CAS  Google Scholar 

  • Zheng A, Luo J, Meng K et al (2014) Proteome changes underpin improved meat quality and yield of chickens (Gallus gallus) fed the probiotic Enterococcus faecium. BMC Genomics 15:1167

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou X, Wang Y, Gu Q, Li W (2010) Effect of dietary probiotic, Bacillus coagulans, on growth performance, chemical composition, and meat quality of Guangxi Yellow chicken. Poult Sci 89(3):588–593. https://doi.org/10.3382/ps.2009-00319

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of “Fundação de Amparo a Pesquisa do Estado de São Paulo” (FAPESP), “Conselho Nacional de Desenvolvimento Científico e Tecnológico” (CNPq) (Grant #302763/2014-7), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anderson de Souza Sant’Ana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Almada, C.N., de Almada, C.N., de Souza Sant’Ana, A. (2018). Paraprobiotics as Potential Agents for Improving Animal Health. In: Di Gioia, D., Biavati, B. (eds) Probiotics and Prebiotics in Animal Health and Food Safety. Springer, Cham. https://doi.org/10.1007/978-3-319-71950-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71950-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71948-1

  • Online ISBN: 978-3-319-71950-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics