Large Internal Solitary Waves in Shallow Waters

Chapter
Part of the Springer Oceanography book series (SPRINGEROCEAN)

Abstract

The propagation of finite amplitude internal waves over an uneven bottom is considered. One of the specific features of the large amplitude internal waves is the ability of the waves to carry fluid in the “trapped core” for a long distance. The velocity of particles in the “trapped core” is very close and, even, exceeds the wave speed. Such waves are detected in different parts of seas and oceans as internal waves of depression and elevation as well as short intrusions at interfaces. Laboratory experiments on the generation, interaction and decay of solitary waves in a two-layer fluid are discussed. Analytical and numerical solutions describing the evolution of internal waves in a shelf zone are constructed by the three-layer shallow water model. Laboratory investigations of the different types of internal waves (bottom, subsurface and interlayer waves) are demonstrating, that the model can be effectively applied to the numerical solution of unsteady wave motions, and the traveling waves, which can be found from the model in rather simple form, give the realistic form and governing parameters of internal waves in laboratory and field observations. The basic features of the large amplitude solitary waves and nonlinear wave trains evolution over a shelf can be represented by the model.

Keywords

Nonlinear internal waves Solitary waves of elevation and depression Nonsymmetric solitary waves Three-layer shallow water equations Internal wave decay Laboratory experiments 

Notes

Acknowledgements

This work was supported by the Russian Foundation for Basic Research (Grant No. 15-01-03942).

References

  1. 1.
    Carr, M., Franklin, J., King, S. E., Davies, P. A., Grue, J., & Dritschel, D. G. (2017). The characteristics of billows generated by internal solitary waves. Journal of Fluid Mechanics, 812, 541–577.CrossRefGoogle Scholar
  2. 2.
    Choi, W. (2000). Modeling of strongly nonlinear internal gravity waves. In: Y. Goda, M. Ikehata and K. Suzuki (Eds.), Proceedings of the Fourth International Conference on Hydrodynamics (pp. 453–458).Google Scholar
  3. 3.
    Choi, W., & Camassa, R. (1999). Fully nonlinear internal waves in a two-fluid system. Journal of Fluid Mechanics, 386, 1–36.CrossRefGoogle Scholar
  4. 4.
    Derzho, O. G., & Grimshaw, R. (2007). Asymmetric internal solitary waves with a trapped core in deep fluids. Physics of Fluids, 19, 096601.CrossRefGoogle Scholar
  5. 5.
    Ermanyuk, E. V., & Gavrilov, N. V. (2007). A note on the propagation speed of a weakly dissipative gravity current. Journal of Fluid Mechanics, 574, 393–403.CrossRefGoogle Scholar
  6. 6.
    Fructus, D., Carr, M., Grue, J., Jensen, A., & Davies, P. A. (2009). Shear-induced breaking of large internal solitary waves. Journal of Fluid Mechanics, 620, 1–29.CrossRefGoogle Scholar
  7. 7.
    Gavrilov, N. V., & Lyapidevskii, V Yu. (2009). Symmetric solitary waves in a two-layer fluid. Doklady Physics, 54(11), 508–511.CrossRefGoogle Scholar
  8. 8.
    Gavrilov, N. V., & Liapidevskii, V. Yu. (2010). Finite-amplitude solitary waves in a two-layer fluid. Journal of Applied Mechanics and Technical Physics, 51(4), 471–481.Google Scholar
  9. 9.
    Gavrilov, N., Liapidevskii, V., & Gavrilova, K. (2011). Large amplitude internal solitary waves over a shelf. Natural Hazards and Earth System Sciences, 11, 17–25.CrossRefGoogle Scholar
  10. 10.
    Gavrilov, N., Liapidevskii, V., & Gavrilova, K. (2012). Mass and momentum transfer by solitary internal waves in a shelf zone. Nonlinear Processes in Geophysics, 19, 265–272.CrossRefGoogle Scholar
  11. 11.
    Gavrilov, N. V., Liapidevskii, V. Y., & Liapidevskaya, Z. A. (2013). Influence of dispersion on the propagation of internal waves in a shelf zone. Fundam. prikl. gidrofiz., 6, 25–34 (in Russian).Google Scholar
  12. 12.
    Gavrilov, N. V., Liapidevskii, V Yu., & Liapidevskaya, Z. A. (2015). Transformation of large amplitude internal waves over a shelf. Fundam. prikl. gidrofiz., 8(3), 32–43 (in Russian).Google Scholar
  13. 13.
    Gavrilyuk, S. L., Liapidevskii, V. Yu., & Chesnokov, A. A. (2016). Spilling breakers in shallow water: Applications to Favre waves and to the shoaling and breaking of solitary waves. Journal of Fluid Mechanics, 808, 441–468.Google Scholar
  14. 14.
    Helfrich, K. R., & Melville, W. K. (2006). Long nonlinear internal waves. Annual Review of Fluid Mechanics, 38, 395–425.CrossRefGoogle Scholar
  15. 15.
    Lamb, K. G. (2003). Shoaling solitary internal waves: On a criterion for the formation of waves with trapped cores. Journal of Fluid Mechanics, 478, 81–100.CrossRefGoogle Scholar
  16. 16.
    Lamb, K. G., & Farmer, D. (2011). Instabilities in an internal solitary-like wave on the Oregon Shelf. Journal of Physical Oceanography, 41, 67–87.CrossRefGoogle Scholar
  17. 17.
    Liapidevskii, V. Yu., & Teshukov, V. M. (2000). Mathematical models of long-wave propagation in an inhomogeneous fluid. Novosibirsk: Publishing House of the Siberian Branch of the Russian Academy of Sciences (in Russian).Google Scholar
  18. 18.
    Liapidevskii, V. Yu., Kukarin, V. F., Navrotsky, V. V., & Khrapchenkov, F. F. (2013). Evolution of large amplitude internal waves of in a swash zone. Fundam. prikl. gidrofiz., 6, 35–45 (in Russian).Google Scholar
  19. 19.
    Liapidevskii, V. Yu., Novotryasov, V. V., Khrapchenkov, F. F., & Yaroshchuk, I. O. (2017). Internal undular bore in a shelf zone. Journal of Applied Mechanics and Technical Physics, 58(5), 809–818.Google Scholar
  20. 20.
    Lien, R Ch., Henyey, F., Ma, B., & Yang, Y. J. (2014). Large-amplitude internal solitary waves observed in the northern South China sea: Properties and energetic. Journal of Physical Oceanography, 44(4), 1095–1115.CrossRefGoogle Scholar
  21. 21.
    Le Metayer, O., Gavrilyuk, S., & Hank, S. (2010). A numerical scheme for the Green-Naghdi model. Journal of Computational Physics, 229, 2034–2045.CrossRefGoogle Scholar
  22. 22.
    Maxworthy, T. (1980). On the formation of nonlinear internal waves from the gravitational collapse of mixing regions in two and three dimensions. Journal of Fluid Mechanics, 96, 47–64.CrossRefGoogle Scholar
  23. 23.
    Moum, J. N., Farmer, D. M., Smyth, W. D., Armi, L., & Vagle, S. (2003). Structure and generation of turbulence at interfaces strained by internal solitary waves propagating shoreward over the continental shelf. Journal of Physical Oceanography, 33, 2093–2112.CrossRefGoogle Scholar
  24. 24.
    Moum, J. N., & Nash, J. D. (2005). River plumes as a source of large amplitude internal waves in the coastal ocean. Nature, 437, 400–403.CrossRefGoogle Scholar
  25. 25.
    Serre, F. (1953). Contribution a l’etude des ecoulements permanents et variables dans les canaux. Houille Blanche, 8(3), 374–388 (in French).Google Scholar
  26. 26.
    Stamp, A. P., & Jacka, M. (1995). Deep-water internal solitary waves. Journal of Fluid Mechanics, 305, 347–371.CrossRefGoogle Scholar
  27. 27.
    Tung, K. K., Chan, T. F., & Kubota, T. (1982). Large amplitude internal waves of permanent form. Studies in Applied Mathematics, 66, 1–44.CrossRefGoogle Scholar
  28. 28.
    Vlasenko, V., & Hutter, K. (2002). Numerical experiments on the breaking of solitary internal waves over a slope-shelf topography. Journal of Physical Oceanography, 32, 1779–1793.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Lavrentyev Institute of HydrodynamicsNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations