Skip to main content

Surface Manifestations of Internal Waves Induced by a Subsurface Buoyant Jet (Experiment and Theory)

  • Chapter
  • First Online:
The Ocean in Motion

Abstract

In this contribution we summarized the main results of the work on internal waves generated by vertical turbulent plumes in stratified fluids, including the mechanisms of internal wave generation, the structure of internal waves, and their surface manifestations Particular attention is focused on the major series of experiments performed in the Large Thermally Stratified Tank of the Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, Russia. The majority of results are applicable for the monitoring of the coastal zone of the oceans. The other potential implications include buoyant plumes generated by subglacial discharge in Greenland fjords.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ansong, J. K., & Sutherland, B. R. (2010). Internal gravity waves generated by convective plumes. Journal of Fluid Mechanics, 648, 405–434.

    Article  Google Scholar 

  2. Arabadzhi, V. V, Bogatyrev, S. D., Bakhanov, V. V. et al. (1999). Laboratory modeling of hydrophysical processes in the upper ocean layer (the large thermostratified tank, Institute of Applied Physics, Russian Academy of Sciences). In V. I. Talanov, & E. N. Pelinovskii (Eds.), Near-surface ocean layer. physical processes of remote probing, (Vol. 2, pp. 231–251) (in Russian).

    Google Scholar 

  3. Bondur, V. G. (2005). Complex satellite monitoring of coastal water areas. In 31st International Symposium on Remote Sensing of Environment, ISRSE.

    Google Scholar 

  4. Bondur V. G. (2011). Satellite monitoring and mathematical modelling of deep runoff turbulent jets in coastal water areas. Waste Water-Evaluation and Management (pp. 155–180). InTech: Croatia. ISBN 978-953-307-233-3.

    Google Scholar 

  5. Bondur, V. G., & Grebenyuk, Y. V. (2001). Remote indication of anthropogenic impacts on the marine environment caused by deep-water sewage discharge: Modeling and Experiment. Issled. Zemli Kosmosa 6,, 1–19.

    Google Scholar 

  6. Bondur V, Tsidilina M. (2005). Features of formation of remote sensing and Sea truth databases for the monitoring of Anthropogenic impact on ecosystems of coastal water areas. In 31st International Symposium on Remote Sensing of Environment, ISRSE (pp. 192–195).

    Google Scholar 

  7. Bondur, V. G., Keeler, R., Gibson, C (2005). Optical satellite imagery detection of internal wave effects from a submerged turbulent outfall in the stratified ocean. Geophysical Research Letters 32, L12610. https://doi.org/10.1029/2005GL022390.

  8. Bondur, V. G., Zhurbas, V. M., Grebenyuk, Yu. V. (2006). Mathematical modeling of turbulent jets of deep-water sewage discharge into coastal basins. Oceanology, 46(6), 757–771.

    Google Scholar 

  9. Bondur, V. G. Grebenjuk, Yu. V. Sabinin, K. D. (2008). Variability of internal tides in the coastal water area of Oahu Island (Hawaii). Oceanology, 48(5), 611–621.

    Google Scholar 

  10. Bondur, V. G., Grebenyuk, Y. V., Ezhova, E. V., Kazakov, V. I., Sergeev, D. A., Soustova, I. A., et al. (2009). Surface manifestations of internal waves investigated by a subsurface buoyant jet: 1. The mechanism of internal waves generation. Izvestiya, Atmosph. Oceanic Physics, 45(6), 779–790.

    Google Scholar 

  11. Bondur, V. G., Grebenyuk, Y. V., Ezhova, E. V., Kazakov, V. I., Sergeev, D. A., Soustova, I. A., et al. (2010). Surface manifestations of internal waves investigated by a subsurface buoyant jet: 2. Internal waves field. Izvestiya, Atmosph. Oceanic Physics, 46, 347–359.

    Article  Google Scholar 

  12. Bondur, V. G., Grebenyuk, Y. V., Ezhova, E. V., Kazakov, V. I., Sergeev, D. A., Soustova, I. A., et al. (2010). Surface manifestations of internal waves investigated by a subsurface buoyant jet: 3. Surface manifestations of internal waves. Izvestiya, Atmosph. Oceanic Physics., 6(4), 482–491.

    Article  Google Scholar 

  13. Bondur, V., Grebenyuk, Y., Ezhova, E., Kandaurov, A., Sergeev, D., & Troitskaya, Y. (2012). Applying of PIV/PTV methods for physical modeling of the turbulent buoyant jets in stratified fluid. In book The Particle Image Velocimetry—Characteristics, Limits and Possible Applications. Ed. By G. Cavazzini. In Tech: ISBN 978-953-51-0625-8. Chapter 13: 345–366.

    Google Scholar 

  14. Burridge, H. C., & Hunt, G. R. (2013). The rhythm of fountains: the length and time scales of rise height fluctuations at low and high Froude numbers. Journal of Fluid Mechanics, 728, 91–119.

    Article  Google Scholar 

  15. Burridge, H. C., & Hunt, G. R. (2016). Entrainment by turbulent fountains. Journal of Fluid Mechanics, 790, 407–419.

    Article  Google Scholar 

  16. Cenedese, C., & Linden, P. F. (2014). Entrainment in two coalescing axisymmetric turbulent plumes. Journal of Fluid Mechanics, 752(R2). https://doi.org/10.1017/jfm.2014.389.

  17. Caulfield, C. P., & Woods, A. W. (1998). Turbulent gravitational convection from a point source in a non-uniformly stratied environment. Journal of Fluid Mechanics, 360, 229–248.

    Article  Google Scholar 

  18. Camassa, R., Lin, Z., McLaughlin, R. M., Merten, K., Tzou, C., & Walsh, J. (2016). White optimal mixing of buoyant jets and plumes in stratified fluids: theory and experiments. Journal of Fluid Mechanics, 790, 71–103.

    Article  Google Scholar 

  19. Druzhinin, O. A., & Troitskaya, Y. I. (2010). Regular and chaotic dynamics of a fountain in a stratified fluid. Chaos., 22, 023116. https://doi.org/10.1063/1.4704814.

    Article  Google Scholar 

  20. Ezhova, E. V., Sergeev, D. A., Kandaurov, A. A., & Troitskaya, Y. I. (2012). Nonsteady dynamics of turbulent axisymmetric jets in stratified fluid: Part 1. Experimental study. Izvestiya, Atmosph. Oceanic Physics., 48(4), 409–417.

    Article  Google Scholar 

  21. Ezhova, E. V., & Troitskaya, Y. I. (2012). Nonsteady dynamics of turbulent axisymmetric jets in stratified fluid: Part 2. Mechanism of excitation of axisymmetric oscillations in a submerged jet. Izvestiya, Atmosph. Oceanic Physics, 48(5), 528–537.

    Article  Google Scholar 

  22. Ezhova, E., Cenedese, C., & Brandt, L. Dynamics of a turbulent buoyant plume in a stratified fluid: an idealized model of subglacial discharge in Greenland fjords// submitted to JPO.

    Google Scholar 

  23. Ezhova, E., Cenedese, C., Brandt, L. (2016). Interaction between a vertical turbulent jet and thermocline. Journal of Physical Oceanography, 46, 3415–3437.

    Google Scholar 

  24. Ermakov, S. A., & Salashin, S. G. (1994). Effect of strong modulation of gravity–capillary waves by internal waves. Doklady Earth Sciences, 337(1), 108–111.

    Google Scholar 

  25. Fischer, H. B., List, E., Koh, R., Imberger, J., & Brooks, N. (1979). Mixing in inland and coastal waters. California, USA: Academic Press.

    Google Scholar 

  26. Friedman, P. D. (2005). Oscillation height of a negatively buoyant jet. Journal of Fluids Engineering, 128(4), 880–882.

    Article  Google Scholar 

  27. Friedman, P., Vadokoot, V. D., Meyer, W. J., & Carey, S. (2007). Instability threshold of a negatively buoyant fountain. Experiments in Fluids, 42, 751–759.

    Article  Google Scholar 

  28. Hunt, G. R., & Burridge, H. C. (2015). Fountains in industry and nature. Annual Review of Fluid Mechanics, 47, 195–220.

    Article  Google Scholar 

  29. Huerre, P., & Monkewitz, P. A. (1990). Local and global instabilities in spatially developing flows. Annual Review of Fluid Mechanics, 22, 473–537.

    Article  Google Scholar 

  30. Hasselmann, K. (1962). On the nonlinear energy transfer in a gravity wave spectrum Part 1 General theory. Journal of Fluid Mechanics, 12, 481–500.

    Article  Google Scholar 

  31. Karlikov, V. P., & Trushina, O. V. (1998). Self-oscillation of flat deep-water fountains. Doklady Earth Sciences, 361(3), 340–344.

    Google Scholar 

  32. Karlikov, V. P., Trushina, O. V. (2006). Self-oscillatory regimes of flowing of flat deep-water jets, In Proceedings of IX All-Russia Congress on Theoretical and Applied Mechanics, Nizhnii Novgorod.

    Google Scholar 

  33. Keeler R., Bondur V., Vithanage D. (April 2004). Sea truth measurements for remote sensing of littoral water. Sea Technology, 53–58.

    Google Scholar 

  34. Koh, C. Y., & Brooks, H. N. (1975). Fluid mechanics of waste-water disposal in the ocean. Annual Review of Fluid Mechanics, 8, 187–211.

    Article  Google Scholar 

  35. Li, L., Smith, W. D., & Thorpe, S. A. (2015). Destabilization of a stratified shear layer by ambient turbulence. Journal of Fluid Mechanics, 771, 1–15.

    Article  Google Scholar 

  36. Morton, B. R., Taylor, G. I., & Turner, J. S. (1956). Turbulent gravitational convection from maintained and instantaneous sources. Proceedings of the Royal Society of London, Series A: Mathematical and Physical Sciences, 234, 1–23.

    Article  Google Scholar 

  37. Sutherland, B. R. (2010). Internal gravity waves. Cambridge University Press.

    Google Scholar 

  38. Turner, J. S. (1966). Jets and plumes with negative or reversing buoyance. Journal of Fluid Mechanics, 26, 779–792.

    Article  Google Scholar 

  39. Troitskaya, Y. I., Sergeev, D. A., Ezhova, E. V., Soustova, I. A., & Kazakov, V. I. (2008). Self-induced internal waves excited by buoyant plumes in a stratified tank. Doklady Earth Sciences, 419(2), 506–510.

    Article  Google Scholar 

  40. Williamson, N., Srinarayana, N., & Armsfield, S. W. (2008). Low-Reynolds-number fountain behavior. Journal of Fluid Mechanics, 608, 297–317.

    Article  Google Scholar 

Download references

Acknowlgedments

This study was supported by the Russian Foundation for Basic Research (projects 18-05-00292, 16-55-52022 MHT-a, 17-05-41117 RGS) and the Ministry of Education and Science of the Russian Federation (project RFMEFI57716X0234).

Numerical code development and numerical modeling were supported by the Russian Science Foundation (â„– 15-17-20009). The basic salary of the IAP RAS authors was obtained from FASO (project â„– 0035-2014-0032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerii G. Bondur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bondur, V.G. et al. (2018). Surface Manifestations of Internal Waves Induced by a Subsurface Buoyant Jet (Experiment and Theory). In: Velarde, M., Tarakanov, R., Marchenko, A. (eds) The Ocean in Motion. Springer Oceanography. Springer, Cham. https://doi.org/10.1007/978-3-319-71934-4_8

Download citation

Publish with us

Policies and ethics