Advertisement

Surface Manifestations of Internal Waves Induced by a Subsurface Buoyant Jet (Experiment and Theory)

  • Valerii G. Bondur
  • Yuliya I. Troitskaya
  • Ekaterina V. Ezhova
  • Vasiliy I. Kazakov
  • Alexandr A. Kandaurov
  • Daniil A. Sergeev
  • Irina A. Soustova
Chapter
Part of the Springer Oceanography book series (SPRINGEROCEAN)

Abstract

In this contribution we summarized the main results of the work on internal waves generated by vertical turbulent plumes in stratified fluids, including the mechanisms of internal wave generation, the structure of internal waves, and their surface manifestations Particular attention is focused on the major series of experiments performed in the Large Thermally Stratified Tank of the Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, Russia. The majority of results are applicable for the monitoring of the coastal zone of the oceans. The other potential implications include buoyant plumes generated by subglacial discharge in Greenland fjords.

Notes

Acknowlgedments

This study was supported by the Russian Foundation for Basic Research (projects 18-05-00292, 16-55-52022 MHT-a, 17-05-41117 RGS) and the Ministry of Education and Science of the Russian Federation (project RFMEFI57716X0234).

Numerical code development and numerical modeling were supported by the Russian Science Foundation (№ 15-17-20009). The basic salary of the IAP RAS authors was obtained from FASO (project № 0035-2014-0032).

References

  1. 1.
    Ansong, J. K., & Sutherland, B. R. (2010). Internal gravity waves generated by convective plumes. Journal of Fluid Mechanics, 648, 405–434.CrossRefGoogle Scholar
  2. 2.
    Arabadzhi, V. V, Bogatyrev, S. D., Bakhanov, V. V. et al. (1999). Laboratory modeling of hydrophysical processes in the upper ocean layer (the large thermostratified tank, Institute of Applied Physics, Russian Academy of Sciences). In V. I. Talanov, & E. N. Pelinovskii (Eds.), Near-surface ocean layer. physical processes of remote probing, (Vol. 2, pp. 231–251) (in Russian).Google Scholar
  3. 3.
    Bondur, V. G. (2005). Complex satellite monitoring of coastal water areas. In 31st International Symposium on Remote Sensing of Environment, ISRSE.Google Scholar
  4. 4.
    Bondur V. G. (2011). Satellite monitoring and mathematical modelling of deep runoff turbulent jets in coastal water areas. Waste Water-Evaluation and Management (pp. 155–180). InTech: Croatia. ISBN 978-953-307-233-3.Google Scholar
  5. 5.
    Bondur, V. G., & Grebenyuk, Y. V. (2001). Remote indication of anthropogenic impacts on the marine environment caused by deep-water sewage discharge: Modeling and Experiment. Issled. Zemli Kosmosa 6,, 1–19.Google Scholar
  6. 6.
    Bondur V, Tsidilina M. (2005). Features of formation of remote sensing and Sea truth databases for the monitoring of Anthropogenic impact on ecosystems of coastal water areas. In 31st International Symposium on Remote Sensing of Environment, ISRSE (pp. 192–195).Google Scholar
  7. 7.
    Bondur, V. G., Keeler, R., Gibson, C (2005). Optical satellite imagery detection of internal wave effects from a submerged turbulent outfall in the stratified ocean. Geophysical Research Letters 32, L12610.  https://doi.org/10.1029/2005GL022390.
  8. 8.
    Bondur, V. G., Zhurbas, V. M., Grebenyuk, Yu. V. (2006). Mathematical modeling of turbulent jets of deep-water sewage discharge into coastal basins. Oceanology, 46(6), 757–771.Google Scholar
  9. 9.
    Bondur, V. G. Grebenjuk, Yu. V. Sabinin, K. D. (2008). Variability of internal tides in the coastal water area of Oahu Island (Hawaii). Oceanology, 48(5), 611–621.Google Scholar
  10. 10.
    Bondur, V. G., Grebenyuk, Y. V., Ezhova, E. V., Kazakov, V. I., Sergeev, D. A., Soustova, I. A., et al. (2009). Surface manifestations of internal waves investigated by a subsurface buoyant jet: 1. The mechanism of internal waves generation. Izvestiya, Atmosph. Oceanic Physics, 45(6), 779–790.Google Scholar
  11. 11.
    Bondur, V. G., Grebenyuk, Y. V., Ezhova, E. V., Kazakov, V. I., Sergeev, D. A., Soustova, I. A., et al. (2010). Surface manifestations of internal waves investigated by a subsurface buoyant jet: 2. Internal waves field. Izvestiya, Atmosph. Oceanic Physics, 46, 347–359.CrossRefGoogle Scholar
  12. 12.
    Bondur, V. G., Grebenyuk, Y. V., Ezhova, E. V., Kazakov, V. I., Sergeev, D. A., Soustova, I. A., et al. (2010). Surface manifestations of internal waves investigated by a subsurface buoyant jet: 3. Surface manifestations of internal waves. Izvestiya, Atmosph. Oceanic Physics., 6(4), 482–491.CrossRefGoogle Scholar
  13. 13.
    Bondur, V., Grebenyuk, Y., Ezhova, E., Kandaurov, A., Sergeev, D., & Troitskaya, Y. (2012). Applying of PIV/PTV methods for physical modeling of the turbulent buoyant jets in stratified fluid. In book The Particle Image Velocimetry—Characteristics, Limits and Possible Applications. Ed. By G. Cavazzini. In Tech: ISBN 978-953-51-0625-8. Chapter 13: 345–366.Google Scholar
  14. 14.
    Burridge, H. C., & Hunt, G. R. (2013). The rhythm of fountains: the length and time scales of rise height fluctuations at low and high Froude numbers. Journal of Fluid Mechanics, 728, 91–119.CrossRefGoogle Scholar
  15. 15.
    Burridge, H. C., & Hunt, G. R. (2016). Entrainment by turbulent fountains. Journal of Fluid Mechanics, 790, 407–419.CrossRefGoogle Scholar
  16. 16.
    Cenedese, C., & Linden, P. F. (2014). Entrainment in two coalescing axisymmetric turbulent plumes. Journal of Fluid Mechanics, 752(R2).  https://doi.org/10.1017/jfm.2014.389.
  17. 17.
    Caulfield, C. P., & Woods, A. W. (1998). Turbulent gravitational convection from a point source in a non-uniformly stratied environment. Journal of Fluid Mechanics, 360, 229–248.CrossRefGoogle Scholar
  18. 18.
    Camassa, R., Lin, Z., McLaughlin, R. M., Merten, K., Tzou, C., & Walsh, J. (2016). White optimal mixing of buoyant jets and plumes in stratified fluids: theory and experiments. Journal of Fluid Mechanics, 790, 71–103.CrossRefGoogle Scholar
  19. 19.
    Druzhinin, O. A., & Troitskaya, Y. I. (2010). Regular and chaotic dynamics of a fountain in a stratified fluid. Chaos., 22, 023116.  https://doi.org/10.1063/1.4704814.CrossRefGoogle Scholar
  20. 20.
    Ezhova, E. V., Sergeev, D. A., Kandaurov, A. A., & Troitskaya, Y. I. (2012). Nonsteady dynamics of turbulent axisymmetric jets in stratified fluid: Part 1. Experimental study. Izvestiya, Atmosph. Oceanic Physics., 48(4), 409–417.CrossRefGoogle Scholar
  21. 21.
    Ezhova, E. V., & Troitskaya, Y. I. (2012). Nonsteady dynamics of turbulent axisymmetric jets in stratified fluid: Part 2. Mechanism of excitation of axisymmetric oscillations in a submerged jet. Izvestiya, Atmosph. Oceanic Physics, 48(5), 528–537.CrossRefGoogle Scholar
  22. 22.
    Ezhova, E., Cenedese, C., & Brandt, L. Dynamics of a turbulent buoyant plume in a stratified fluid: an idealized model of subglacial discharge in Greenland fjords// submitted to JPO.Google Scholar
  23. 23.
    Ezhova, E., Cenedese, C., Brandt, L. (2016). Interaction between a vertical turbulent jet and thermocline. Journal of Physical Oceanography, 46, 3415–3437.Google Scholar
  24. 24.
    Ermakov, S. A., & Salashin, S. G. (1994). Effect of strong modulation of gravity–capillary waves by internal waves. Doklady Earth Sciences, 337(1), 108–111.Google Scholar
  25. 25.
    Fischer, H. B., List, E., Koh, R., Imberger, J., & Brooks, N. (1979). Mixing in inland and coastal waters. California, USA: Academic Press.Google Scholar
  26. 26.
    Friedman, P. D. (2005). Oscillation height of a negatively buoyant jet. Journal of Fluids Engineering, 128(4), 880–882.CrossRefGoogle Scholar
  27. 27.
    Friedman, P., Vadokoot, V. D., Meyer, W. J., & Carey, S. (2007). Instability threshold of a negatively buoyant fountain. Experiments in Fluids, 42, 751–759.CrossRefGoogle Scholar
  28. 28.
    Hunt, G. R., & Burridge, H. C. (2015). Fountains in industry and nature. Annual Review of Fluid Mechanics, 47, 195–220.CrossRefGoogle Scholar
  29. 29.
    Huerre, P., & Monkewitz, P. A. (1990). Local and global instabilities in spatially developing flows. Annual Review of Fluid Mechanics, 22, 473–537.CrossRefGoogle Scholar
  30. 30.
    Hasselmann, K. (1962). On the nonlinear energy transfer in a gravity wave spectrum Part 1 General theory. Journal of Fluid Mechanics, 12, 481–500.CrossRefGoogle Scholar
  31. 31.
    Karlikov, V. P., & Trushina, O. V. (1998). Self-oscillation of flat deep-water fountains. Doklady Earth Sciences, 361(3), 340–344.Google Scholar
  32. 32.
    Karlikov, V. P., Trushina, O. V. (2006). Self-oscillatory regimes of flowing of flat deep-water jets, In Proceedings of IX All-Russia Congress on Theoretical and Applied Mechanics, Nizhnii Novgorod.Google Scholar
  33. 33.
    Keeler R., Bondur V., Vithanage D. (April 2004). Sea truth measurements for remote sensing of littoral water. Sea Technology, 53–58.Google Scholar
  34. 34.
    Koh, C. Y., & Brooks, H. N. (1975). Fluid mechanics of waste-water disposal in the ocean. Annual Review of Fluid Mechanics, 8, 187–211.CrossRefGoogle Scholar
  35. 35.
    Li, L., Smith, W. D., & Thorpe, S. A. (2015). Destabilization of a stratified shear layer by ambient turbulence. Journal of Fluid Mechanics, 771, 1–15.CrossRefGoogle Scholar
  36. 36.
    Morton, B. R., Taylor, G. I., & Turner, J. S. (1956). Turbulent gravitational convection from maintained and instantaneous sources. Proceedings of the Royal Society of London, Series A: Mathematical and Physical Sciences, 234, 1–23.CrossRefGoogle Scholar
  37. 37.
    Sutherland, B. R. (2010). Internal gravity waves. Cambridge University Press.Google Scholar
  38. 38.
    Turner, J. S. (1966). Jets and plumes with negative or reversing buoyance. Journal of Fluid Mechanics, 26, 779–792.CrossRefGoogle Scholar
  39. 39.
    Troitskaya, Y. I., Sergeev, D. A., Ezhova, E. V., Soustova, I. A., & Kazakov, V. I. (2008). Self-induced internal waves excited by buoyant plumes in a stratified tank. Doklady Earth Sciences, 419(2), 506–510.CrossRefGoogle Scholar
  40. 40.
    Williamson, N., Srinarayana, N., & Armsfield, S. W. (2008). Low-Reynolds-number fountain behavior. Journal of Fluid Mechanics, 608, 297–317.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Valerii G. Bondur
    • 1
  • Yuliya I. Troitskaya
    • 2
  • Ekaterina V. Ezhova
    • 2
  • Vasiliy I. Kazakov
    • 2
  • Alexandr A. Kandaurov
    • 2
  • Daniil A. Sergeev
    • 2
  • Irina A. Soustova
    • 2
  1. 1.AEROCOSMOS Research Institute for Aerospace MonitoringMoscowRussia
  2. 2.Institute of Applied Physics, Russian Academy of SciencesNizhni NovgorodRussia

Personalised recommendations