The Ocean in Motion pp 23-39 | Cite as

# Internal Undular Bores in the Coastal Ocean

## Abstract

In the coastal ocean, large amplitude, horizontally propagating internal wave trains are commonly observed. These are long nonlinear waves and are often modelled by equations of the Korteweg-de Vries type, such as the variable-coefficient Korteweg-de Vries equation when the background topography varies as the waves propagate shoreward. Most emphasis has been placed on the solitary wave solutions of these model equations, whereas in reality, wave trains are more usually observed. In this review article we examine the undular bore asymptotic representation of wave trains in the framework of the variable-coefficient Korteweg-de Vries equation, placing a special emphasis on the front of the undular bore which can be represented by a simplified model as a solitary wave train. We consider applications for both propagation shorewards whenw nonlinearity increases, and for cases when the wave train passes through a critical point of polarity change, when the nonlinear coefficient in the Korteweg-de Vries equation changes sign.

## Notes

### Acknowledgements

RG was supported by the Leverhulme Trust through the award of a Leverhulme Emeritus Fellowship.

## References

- 1.Ablowitz, M. J., & Segur, H. (1981).
*Solitons and the inverse scattering transform*. Philadelphia: SIAM.Google Scholar - 2.Benjamin, T. B. (1966). Internal waves of finite amplitude and permanent form.
*Journal of Fluid Mechanics*,*25*, 241–270.CrossRefGoogle Scholar - 3.Benney, D. J. (1966). Long non-linear waves in fluid flows.
*Journal of Mathematical Physics*,*45*, 52–63.CrossRefGoogle Scholar - 4.El, G. (2007). Kortweg-de Vries equation and undular bores. In R. Grimshaw (Ed.),
*Solitary waves in fluids*. Advances in Fluid Mechanics (Vol. 47, pp. 19–53). WIT Press.Google Scholar - 5.El, G. A., Grimshaw, R. H. J., & Tiong, W. K. (2012). Transformation of a shoaling undular bore.
*Journal of Fluid Mechanics, 709*, 371–395.Google Scholar - 6.Fornberg, B., & Whitham, G. B. (1978). A numerical and theoretical study of certain nonlinear wave phenomena.
*Philosophical Transactions of the Royal Society A*,*289*, 373–404.CrossRefGoogle Scholar - 7.Grimshaw, R. (1979). Slowly varying solitary waves. I. Korteweg-de Vries equation.
*Proceedings of the Royal Society*,*368A*, 359–375.CrossRefGoogle Scholar - 8.Grimshaw, R. (1981). Evolution equations for long nonlinear internal waves in stratified shear flows.
*Studies in Applied Mathematics*,*65*, 159–188.CrossRefGoogle Scholar - 9.Grimshaw, R. (2001). Internal solitary waves. In R. Grimshaw (Ed.),
*Environmental stratified flows*(pp. 1–27). Boston: Kluwer.Google Scholar - 10.Grimshaw, R. (2007). Internal solitary waves in a variable medium.
*Gesellschaft fur Angewandte Mathematik*,*30*, 96–109.Google Scholar - 11.Grimshaw, R. (2010). Transcritical flow past an obstacle.
*ANZIAM Journal*,*52*, 1–25.CrossRefGoogle Scholar - 12.Grimshaw, R. (2015). Change of polarity for periodic waves in the variable-coefficient Korteweg-de Vries equation.
*Studies in Applied Mathematics*,*134*, 363–371.CrossRefGoogle Scholar - 13.Grimshaw, R. H. J., & Smyth, N. F. (1986). Resonant flow of a stratified fluid over topography.
*Journal of Fluid Mechanics*,*169*, 429–464.CrossRefGoogle Scholar - 14.Grimshaw, R., Pelinovsky, E., & Talipova, T. (2007). Modeling internal solitary waves in the coastal ocean.
*Surveys in Geophysics*,*28*, 273–298.CrossRefGoogle Scholar - 15.Grimshaw, R., Pelinovsky, E., Talipova, T., & Kurkina, A. (2010). Internal solitary waves: Propagation, deformation and disintegration.
*Nonlinear Processes in Geophysics*,*17*, 633–649.CrossRefGoogle Scholar - 16.Grimshaw, R., & Yuan, C. (2016). The propagation of internal undular bores over variable topography.
*Physica D*,*333*, 200–207.CrossRefGoogle Scholar - 17.Grimshaw, R., & Yuan, C. (2016). Depression and elevation tsunami waves in the framework of the Korteweg-de Vries equation.
*Natural Hazards*,*84*, S493–S511.CrossRefGoogle Scholar - 18.Gurevich, A. V., & Pitaevskii, L. P. (1974). Nonstationary structure of a collisionless shock wave.
*Soviet Physics JETP*,*38*, 291–297.Google Scholar - 19.Helfrich, K. R., & Melville, W. K. (2006). Long nonlinear internal waves.
*Annual Review of Fluid Mechanics*,*38*, 395–425.CrossRefGoogle Scholar - 20.Holloway, P., Pelinovsky, E., & Talipova, T. (2001). Internal tide transformation and oceanic internal solitary waves. In R. Grimshaw (Ed.),
*Environmental stratified flows*(pp. 31–60). Boston: Kluwer.Google Scholar - 21.Kamchatnov, A. M. (2000).
*Nonlinear periodic waves and their modulations. An introductory course*. World Scientific.Google Scholar - 22.Kamchatnov, A. M. (2004). On Whitham theory for perturbed integrable equations.
*Physica D*,*188*, 247–281.CrossRefGoogle Scholar - 23.Liu, Z., Grimshaw, R., & Johnson, E. (2017). Internal solitary waves propagating through variable background hydrology and currents.
*Ocean Modelling*.Google Scholar - 24.Myint, S., & Grimshaw, R. (1995). The modulation of nonlinear periodic wavetrains by dissipative terms in the Korteweg-de Vries equation.
*Wave Motion*,*22*, 215–238.CrossRefGoogle Scholar - 25.Ostrovsky, L. A., & Stepanyants, Y. A. (2005). Internal solitons in laboratory experiments: Comparison with theoretical models.
*Chaos*,*28*, 037111.CrossRefGoogle Scholar - 26.Pelinovsky, E. N., Rayevsky, M. A., & Shavratsky, S. K. (1977). The Korteweg-de Vries equation for nonstationary internal waves in an inhomogeneous ocean.
*Izvestiya, Atmospheric and Oceanic Physics*,*13*, 226–228.Google Scholar - 27.Vlasenko, V. I., Stashchuk, N. M., & Hutter, K. (2005).
*Baroclinic tides: Theoretical modelling and observational evidence*. Cambridge University Press.Google Scholar - 28.Whitham, G. B. (1965). Nonlinear dispersive waves.
*Proceedings of the Royal Society of London A*,*283*, 238–261.Google Scholar - 29.Whitham, G. B. (1974).
*Linear and nonlinear waves*. Wiley.Google Scholar - 30.Zhou, X., & Grimshaw, R. (1989). The effect of variable currents on internal solitary waves.
*Dynamics of Atmospheres and Oceans*,*14*, 17–39.CrossRefGoogle Scholar