Advertisement

Internal Undular Bores in the Coastal Ocean

  • Roger Grimshaw
  • Chunxin Yuan
Chapter
Part of the Springer Oceanography book series (SPRINGEROCEAN)

Abstract

In the coastal ocean, large amplitude, horizontally propagating internal wave trains are commonly observed. These are long nonlinear waves and are often modelled by equations of the Korteweg-de Vries type, such as the variable-coefficient Korteweg-de Vries equation when the background topography varies as the waves propagate shoreward. Most emphasis has been placed on the solitary wave solutions of these model equations, whereas in reality, wave trains are more usually observed. In this review article we examine the undular bore asymptotic representation of wave trains in the framework of the variable-coefficient Korteweg-de Vries equation, placing a special emphasis on the front of the undular bore which can be represented by a simplified model as a solitary wave train. We consider applications for both propagation shorewards whenw nonlinearity increases, and for cases when the wave train passes through a critical point of polarity change, when the nonlinear coefficient in the Korteweg-de Vries equation changes sign.

Notes

Acknowledgements

RG was supported by the Leverhulme Trust through the award of a Leverhulme Emeritus Fellowship.

References

  1. 1.
    Ablowitz, M. J., & Segur, H. (1981). Solitons and the inverse scattering transform. Philadelphia: SIAM.Google Scholar
  2. 2.
    Benjamin, T. B. (1966). Internal waves of finite amplitude and permanent form. Journal of Fluid Mechanics, 25, 241–270.CrossRefGoogle Scholar
  3. 3.
    Benney, D. J. (1966). Long non-linear waves in fluid flows. Journal of Mathematical Physics, 45, 52–63.CrossRefGoogle Scholar
  4. 4.
    El, G. (2007). Kortweg-de Vries equation and undular bores. In R. Grimshaw (Ed.), Solitary waves in fluids. Advances in Fluid Mechanics (Vol. 47, pp. 19–53). WIT Press.Google Scholar
  5. 5.
    El, G. A., Grimshaw, R. H. J., & Tiong, W. K. (2012). Transformation of a shoaling undular bore. Journal of Fluid Mechanics, 709, 371–395.Google Scholar
  6. 6.
    Fornberg, B., & Whitham, G. B. (1978). A numerical and theoretical study of certain nonlinear wave phenomena. Philosophical Transactions of the Royal Society A, 289, 373–404.CrossRefGoogle Scholar
  7. 7.
    Grimshaw, R. (1979). Slowly varying solitary waves. I. Korteweg-de Vries equation. Proceedings of the Royal Society, 368A, 359–375.CrossRefGoogle Scholar
  8. 8.
    Grimshaw, R. (1981). Evolution equations for long nonlinear internal waves in stratified shear flows. Studies in Applied Mathematics, 65, 159–188.CrossRefGoogle Scholar
  9. 9.
    Grimshaw, R. (2001). Internal solitary waves. In R. Grimshaw (Ed.), Environmental stratified flows (pp. 1–27). Boston: Kluwer.Google Scholar
  10. 10.
    Grimshaw, R. (2007). Internal solitary waves in a variable medium. Gesellschaft fur Angewandte Mathematik, 30, 96–109.Google Scholar
  11. 11.
    Grimshaw, R. (2010). Transcritical flow past an obstacle. ANZIAM Journal, 52, 1–25.CrossRefGoogle Scholar
  12. 12.
    Grimshaw, R. (2015). Change of polarity for periodic waves in the variable-coefficient Korteweg-de Vries equation. Studies in Applied Mathematics, 134, 363–371.CrossRefGoogle Scholar
  13. 13.
    Grimshaw, R. H. J., & Smyth, N. F. (1986). Resonant flow of a stratified fluid over topography. Journal of Fluid Mechanics, 169, 429–464.CrossRefGoogle Scholar
  14. 14.
    Grimshaw, R., Pelinovsky, E., & Talipova, T. (2007). Modeling internal solitary waves in the coastal ocean. Surveys in Geophysics, 28, 273–298.CrossRefGoogle Scholar
  15. 15.
    Grimshaw, R., Pelinovsky, E., Talipova, T., & Kurkina, A. (2010). Internal solitary waves: Propagation, deformation and disintegration. Nonlinear Processes in Geophysics, 17, 633–649.CrossRefGoogle Scholar
  16. 16.
    Grimshaw, R., & Yuan, C. (2016). The propagation of internal undular bores over variable topography. Physica D, 333, 200–207.CrossRefGoogle Scholar
  17. 17.
    Grimshaw, R., & Yuan, C. (2016). Depression and elevation tsunami waves in the framework of the Korteweg-de Vries equation. Natural Hazards, 84, S493–S511.CrossRefGoogle Scholar
  18. 18.
    Gurevich, A. V., & Pitaevskii, L. P. (1974). Nonstationary structure of a collisionless shock wave. Soviet Physics JETP, 38, 291–297.Google Scholar
  19. 19.
    Helfrich, K. R., & Melville, W. K. (2006). Long nonlinear internal waves. Annual Review of Fluid Mechanics, 38, 395–425.CrossRefGoogle Scholar
  20. 20.
    Holloway, P., Pelinovsky, E., & Talipova, T. (2001). Internal tide transformation and oceanic internal solitary waves. In R. Grimshaw (Ed.), Environmental stratified flows (pp. 31–60). Boston: Kluwer.Google Scholar
  21. 21.
    Kamchatnov, A. M. (2000). Nonlinear periodic waves and their modulations. An introductory course. World Scientific.Google Scholar
  22. 22.
    Kamchatnov, A. M. (2004). On Whitham theory for perturbed integrable equations. Physica D, 188, 247–281.CrossRefGoogle Scholar
  23. 23.
    Liu, Z., Grimshaw, R., & Johnson, E. (2017). Internal solitary waves propagating through variable background hydrology and currents. Ocean Modelling.Google Scholar
  24. 24.
    Myint, S., & Grimshaw, R. (1995). The modulation of nonlinear periodic wavetrains by dissipative terms in the Korteweg-de Vries equation. Wave Motion, 22, 215–238.CrossRefGoogle Scholar
  25. 25.
    Ostrovsky, L. A., & Stepanyants, Y. A. (2005). Internal solitons in laboratory experiments: Comparison with theoretical models. Chaos, 28, 037111.CrossRefGoogle Scholar
  26. 26.
    Pelinovsky, E. N., Rayevsky, M. A., & Shavratsky, S. K. (1977). The Korteweg-de Vries equation for nonstationary internal waves in an inhomogeneous ocean. Izvestiya, Atmospheric and Oceanic Physics, 13, 226–228.Google Scholar
  27. 27.
    Vlasenko, V. I., Stashchuk, N. M., & Hutter, K. (2005). Baroclinic tides: Theoretical modelling and observational evidence. Cambridge University Press.Google Scholar
  28. 28.
    Whitham, G. B. (1965). Nonlinear dispersive waves. Proceedings of the Royal Society of London A, 283, 238–261.Google Scholar
  29. 29.
    Whitham, G. B. (1974). Linear and nonlinear waves. Wiley.Google Scholar
  30. 30.
    Zhou, X., & Grimshaw, R. (1989). The effect of variable currents on internal solitary waves. Dynamics of Atmospheres and Oceans, 14, 17–39.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsUniversity College LondonLondonUK

Personalised recommendations