Advertisement

Seasonal Freezing of a Subwater Ground Layer at the Laptev Sea Shelf

  • Peter V. Bogorodskii
  • Andrey V. Pnyushkov
  • Vasilii Yu. Kustov
Chapter
Part of the Springer Oceanography book series (SPRINGEROCEAN)

Abstract

In this contribution, we present results from instrumental sea ice/ocean observations collected during the winter of 2014–15 in the Buor-Khaya Bay (southern Laptev Sea; Arctic Ocean). An observational analysis was complemented by numerical simulations, with a conceptual, one-dimensional thermodynamic model employed to describe the formation of sea ice cover, and to estimate the effect of fast ice growth on freezing of the underlying layer of bottom sediments. One of the advantages of this model is the application of two known methods for localization of the phase transition area. The classical (frontal) approach was used to reproduce seasonal growth of the fast ice layer, while the temperature spectrum describes phase transitions in the layer of bottom sediments. Using the developed model, we have described the thermodynamic evolution of the ice cover and the upper layer of the bottom sediments in the Tiksi Gulf. The simulations performed show that the presence of a liquid sub-ice layer, caused by salt rejection (an important element of the “ice-brine-ground” system) prevents complete freezing of the water layer even at very low (<−40 °C) air temperatures. The increased salinity of the sub-ice layer can cause melting of fast ice in shallow parts of the bay, even at negative air temperatures, alongside simultaneous growth in the areas located far from the coast.

Notes

Acknowledgements

This study was supported by the Russian Foundation for Basic Research (Project #17-05-01221 “Investigation of atmospheric boundary layer in the Arctic region with the data of the Russian polar observatories measurements”), the Ministry of Science and Education of the Russian Federation (Project “Changing Arctic Transpolar System” # 2017-14-588-0005-003), Roshydromet (Target scientific and technical program 1.5.3.2 “Environmental monitoring at the Tiksi Hydrometeorological Observatory in the frame of international project of joint researches”), and NSF (grants AON-1203473 and AON-1338948).

References

  1. 1.
    Bekryaev, R. V., Polyakov, I. V., & Alexeev, V. A. (2010). Role of polar amplification in long-term surface air temperature variations and modern Arctic warming. Journal of Climate, 23, 3888–3906.CrossRefGoogle Scholar
  2. 2.
    Bogorodsky, P. V., & Pnyushkov, A. V. (2007). A simple model for seawater crystallization in the temperature spectrum. Oceanology, 47(4), 500–506.CrossRefGoogle Scholar
  3. 3.
    Bogorodskii, P. V., Marchenko, A. V., Pnyushkov, A. V., & Ogorodov, A. S. (2010). Formation of fast ice and its impact on the coastal zone of the Arctic seas. Oceanology, 50(3), 345–354.CrossRefGoogle Scholar
  4. 4.
    Bogorodskii, P. V., & Pnyushkov, A. V. (2011). Impact of Arctic land fast-ice growth on subwater ground freezing. Problemy Arktiki i Antarktiki. Problems of Arctic and Antarctic, 3(89), 69–77 (in Russian).Google Scholar
  5. 5.
    Cheverov, V. G., Vidyapin, I. Y., & Tumskoj, V. E. (2007). The composition and properties of thermokarst lagoons deposits at the Bykovsky Peninsula. Kriosfera Zemli. Earth Cryosphere, 11(3), 44–50 (in Russian).Google Scholar
  6. 6.
    Chuvilin, E. M., Buhanov, B. A., Tumskoj, V. E., Shahova, N. E., & Semiletov, I. P. (2013). Thermal conductivity of bottom sediments in the region of Buor-Haya Bay (shelf of the Laptev Sea). Kriosfera Zemli. Earth Cryosphere, 17(2), 32–40 (in Russian).Google Scholar
  7. 7.
    Grishin, P. A. (1963). The freezing temperature of saline soils. Trudy SOYUZMORNIIproekta. The works of the SOYUZMORNIIproekt, 3(9), 84–91 (in Russian).Google Scholar
  8. 8.
    Dmitrenko, I. A., Gribanov, V. A., Volkov, D. L., Kassens, H., & Eicken, H. (1999). Impact of river discharge on the fast ice extension in the Russian Arctic shelf area. In Proceedings of 15th International Conference on Port and Ocean Engineering Under Arctic Conditions (POAC99), Helsinki, 23–27 August 1999 (Vol. 1, pp. 311–321).Google Scholar
  9. 9.
    Harrison, W. D., & Ostercamp, T. E. (1978). Heat and mass transport processes in subsea permafrost. 1. An analysis of molecular diffusion and its consequences. Journal Geophysical Research, 83(C9), 4707–4712.CrossRefGoogle Scholar
  10. 10.
    Junker, R., Grigoriev, M. N., & Kaul, N. (2008). Non-contact infrared temperature measurements in dry permafrost boreholes. Journal Geophysical Research, 113, B04102.  https://doi.org/10.1029/2007JB004946.CrossRefGoogle Scholar
  11. 11.
    Karklin, V. P., Karelin, I. D., Yulin, A. V., & Usoltseva, E. A. (2013). Peculiarities of the landfast ice formation in the Laptev sea. Problemy Arktiki i Antarktiki. Problems of Arctic and Antarctic, 3(97), 5–14 (in Russian).Google Scholar
  12. 12.
    Kerr, R. S., Woods, A. N., Worster, M. G., & Huppert, H. E. (1990). Solidification of an alloy cooled from above. Part 1. Equilibrium growth. Journal of Fluid Mechanics, 216, 323–342.CrossRefGoogle Scholar
  13. 13.
    Khimenkov, A. N., & Brushkov, A. V. (2003). Oceanic cryolite genesis (336 pp.). Nauka (in Russian).Google Scholar
  14. 14.
    Makshtas, A. P. (1984). Teplovoy balans arkticheskih ldov v zimniy period. The heat balance of the Arctic sea ice in the winter period (66 pp.). Leningrad: Gidrometeoizdat (in Russian).Google Scholar
  15. 15.
    Molochushkin, E. N., & Gavriliev, Z. I. (1970). Structure, phase composition and thermal regime of rocks composing the bottom of the coastal zone of the Laptev sea. In The Arctic Ocean and its coast in the Cenozoic (pp. 503–509). Gidrometeoizdat (in Russian).Google Scholar
  16. 16.
    Nastavlenie po gidrometeorologicheskim stanciyam i postam. Manual to Hydrometeorological Stations and Posts (Vol. 9. Issue 1, 311 pp.). (1984). Leningrad: Gidrometeoizdat (in Russian).Google Scholar
  17. 17.
    Nazintsev, Y. L., & Panov, V. V. (2000). Phase composition and thermal characteristics of the sea ice (83 pp.). Gidrometeoizdat (in Russian).Google Scholar
  18. 18.
    Overduin, P. P., Wetterich, S., Günther, F., Grigoriev, M. N., Grosse, G., Schirrmeister, L., et al. (2016). Coastal dynamics and submarine permafrost in shallow water of the central Laptev Sea, East Siberia. The Cryosphere, 10, 1449–1462.  https://doi.org/10.5194/tc-10-1449-2016.CrossRefGoogle Scholar
  19. 19.
    Padman, L., & Erofeeva, S. (2004). A barotropic inverse tidal model for the Arctic Ocean. Geophysical Research Letters, 31(2), L02303.  https://doi.org/10.1029/2003GL019003.CrossRefGoogle Scholar
  20. 20.
    Pnyushkov, A., & Polyakov, I. (2012). Observations of tidally induced currents over the continental slope of the Laptev Sea, Arctic Ocean. Journal of Physical Oceanography, 42, 78–94.CrossRefGoogle Scholar
  21. 21.
    Rachold, V., Bolshiyanov, D. Y., Grigoriev, M. N., Hubberten, H.-W., Junker, R., Kunitsky, V. V., et al. (2007). Nearshore Arctic subsea permafrost in transition. EOS: Transactions, American Geophysical Union, 88(13), 149–156.Google Scholar
  22. 22.
    Selyuzhenok, V., Krumpen, T., Mahoney, A., Janout, M., & Gerdes, R. (2015). Seasonal and interannual variability of fast ice extent in the southeastern Laptev Sea between 1999 and 2013. Journal of Geophysical Research: Oceans, 120, 7791–7806.  https://doi.org/10.1002/2015JC011135.Google Scholar
  23. 23.
    Sergienko, V. I., Lobkovskii, L. I., Semiletov, I. P., et al. (2012). The degradation of submarine permafrost and the destruction of hydrates on the shelf of east Arctic seas as a potential cause of the “methane catastrophe”. Doklady Earth Science, 446(3), 1132.  https://doi.org/10.1134/S1028334X12080144.CrossRefGoogle Scholar
  24. 24.
    Shakhova, N., Semiletov, I., Leifer, I., Sergienko, V., Salyuk, A., Kosmach, D., et al. (2014). Ebullition and storm-induced methane release from the East Siberian Arctic Shelf. Nature Geoscience, 7(1), 64–70.  https://doi.org/10.1038/ngeo2007.
  25. 25.
    Vasiliev, V. I., Maksimov, A. M., Petrov, E. E., & Tsypkin, G. G. (1997). Heat and mass transfer in freezing and thawing grounds. Physical and Mathematical Literature, 1997, 224 (in Russian).Google Scholar
  26. 26.
    Vieze, V. Y. (1994). Osnovy dolgosrochnyh ledovyh prognozov dlya arkticheskih morey. The basis of long-term ice extent forecasts for the Arctic seas (Vol. 159, 274 pp.). Transactions of the Arctic Research Institute. Leningrad: Publishing of Glavsevmorput’ (in Russian).Google Scholar
  27. 27.
    Wettlaufer, J. (1998). Introduction to crystallization phenomena in natural and artificial sea ice. In M. Leppäranta (Ed.), Physics of ice-covered seas (Vol. 1, pp. 105–194). Helsinki: Helsinki University Press.Google Scholar
  28. 28.
    Worster, M. G. (1986). Solidification of an alloy from a cooled boundary. Journal of Fluid Mechanics, 167, 481–501.CrossRefGoogle Scholar
  29. 29.
    Yang, Y., Leppäranta, M., Li, Z. J. et al. (2015). Model simulations of the annual cycle of the landfast ice thickness in the East Siberian Sea. Advanced in Polar Science, 26(2), 168–178.  https://doi.org/10.13679/j.advps.2015.2.00168.
  30. 30.
    Zhigarev, L. A. (1997). Oceanocheskaya kriolitozona. The Cryo-litosperic zone of ocean (320 pp.). Moscow: Moscow State University (in Russian).Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Peter V. Bogorodskii
    • 1
  • Andrey V. Pnyushkov
    • 2
    • 3
  • Vasilii Yu. Kustov
    • 1
  1. 1.Arctic and Antarctic Research InstituteSt. PetersburgRussia
  2. 2.International Arctic Research Centre, University of AlaskaFairbanksUSA
  3. 3.Arctic Research Centre, University of HokkaidoSapporoJapan

Personalised recommendations