Numerical Modeling of Internal Wave Generation at High Latitudes

  • Oxana E. Kurkina
  • Tatiana G. Talipova
  • Efim N. Pelinovsky
  • Andrey A. Kurkin
Chapter
Part of the Springer Oceanography book series (SPRINGEROCEAN)

Abstract

This contribution is focused on the semidiurnal internal tide in the Barents Sea generated north of the critical latitude (74.5° N). The study is based on the numerical modeling of internal wave generation and dynamics using of the Euler 2D equations for incompressible stratified fluid. The study site is located between Svalbard and the Franz-Victoria Trough. A Section 350 km long is chosen for the analysis in this basin. The bottom topography in the region is quite steep; four underwater hills with heights about 150–230 m over the background depth of about 350 m are located here. Calculations confirm the observation data in the vicinity of this region. Intense nonlinear internal waves with amplitudes up to 50 m and lengths of about 6–12 km are generated in this region of the Arctic.

Notes

Acknowledgements

This study was initiated in the framework of the state task programme in the sphere of scientific activity of the Ministry of Education and Science of the Russian Federation (projects No. 5.4568.2017/6.7 and No. 5.1246.2017/4.6) and financially supported by this programme, grant of the President of the Russian Federation (NSh-2685.2018.5) and Russian Foundation for Basic Research (grant No. 16-05-00049).

References

  1. 1.
    LeBlond, P. H., & Mysak, L. A. (1978). Waves in the ocean. Amsterdam: Elsevier.Google Scholar
  2. 2.
    D’Asaro, E. A., & Morison, J. H. (1992). Internal waves and mixing in the Arctic Ocean. Deep-Sea Research, 39(2), S459–S484.  https://doi.org/10.1016/s0198-0149(06)80016-6.CrossRefGoogle Scholar
  3. 3.
    Guthrie, J. D., Morison, J. H., & Fer, I. (2013). Revisiting internal waves and mixing in the Arctic Ocean. Journal of Geophysical Research: Oceans, 118(8), 3966–3977.  https://doi.org/10.1002/jgrc.20294.Google Scholar
  4. 4.
    Pisarev, S. V. (1995). Internal waves measurements with distributed temperature sensors near Arctic Ocean continental shelf margin. In Challenges of Our Changing Global Environment, Conference Proceedings, OCEANS’95 MTS/IEEE.  https://doi.org/10.1109/oceans.1995.528542.
  5. 5.
    Pisarev, S. V. (1996). Low-frequency internal waves near the shelf edge of the Arctic Basin. Oceanology, 36, 771–778.Google Scholar
  6. 6.
    Støylen, E., & Fer, I. (2014). Tidally induced internal motion in an Arctic fjord. Nonlinear Processes in Geophysics, 21(1), 87–100.  https://doi.org/10.5194/npg-21-87-2014.CrossRefGoogle Scholar
  7. 7.
    Marchenko, A. V., Morozov, E. G., Muzylev, S. V., & Shestov, A. S. (2010). Interaction of short internal waves with the ice cover in an Arctic fjord. Oceanology, 50(1), 18–27.  https://doi.org/10.1134/s0001437010010029.CrossRefGoogle Scholar
  8. 8.
    Morozov, E. G., Paka, V. T., & Bakhanov, V. V. (2008). Strong internal tides in the Kara Gates Strait. Geophysical Research Letters, 35, L16603.  https://doi.org/10.1029/2008GL033804.CrossRefGoogle Scholar
  9. 9.
    Morozov, E. G., & Pisarev, S. V. (2002). Internal tides at the arctic latitudes (numerical experiments). Oceanology, 42(2), 153–161.Google Scholar
  10. 10.
    Morozov, E. G., Parrilla-Barrera, G., Velarde, M. G., & Scherbinin, A. D. (2003). The Straits of Gibraltar and Kara gates: A comparison of internal tides. Oceanologica Acta, 26(3), 231–241.CrossRefGoogle Scholar
  11. 11.
    Morozov, E. G., & Paka, V. T. (2010). Internal waves in a high latitude region. Oceanology, 50(5), 668–674.CrossRefGoogle Scholar
  12. 12.
    Morozov, E. G., & Marchenko, A. V. (2012). Short-period internal waves in an Arctic fjord (Spitsbergen). Izvestiya, Atmospheric and Oceanic Physics, 48(4), 401–408.  https://doi.org/10.1134/s0001433812040123.CrossRefGoogle Scholar
  13. 13.
    Nakamura, T., Awaji, T., Hatayama, T., Akimoto, K., Takizawa, T., Koho, T., et al. (2000). The generation of large-amplitude unsteady lee waves by subinertial tidal flow: A possible vertical mixing mechanism in the Kuril Straits. Journal of Physical Oceanography, 30, 1601–1621.CrossRefGoogle Scholar
  14. 14.
    Alford, M. H., Peacock, T., MacKinnon, J. A., Nash, J. D., Buijsman, M. C., Centuroni, L. R., et al. (2015). The formation and fate of internal waves in the South China Sea. Nature, 521(7550), 65–69.  https://doi.org/10.1038/nature14399.
  15. 15.
    Vlasenko, V., Stashchuk, N., Hutter, K., & Sabinin, K. (2003). Nonlinear internal waves forced by tides near the critical latitude. Deep-Sea Research, 50(1), 317–338.CrossRefGoogle Scholar
  16. 16.
    Kurkina, O., & Talipova, T. (2011). Huge internal waves in the vicinity of the Spitsbergen Island (Barents Sea). Natural Hazards and Earth Systems Sciences, 11, 981–986.  https://doi.org/10.5194/nhess-11-981-2011.CrossRefGoogle Scholar
  17. 17.
    Lamb, K. (1994). Numerical experiments of internal wave generation by strong tidal flow across a finite amplitude bank edge. Journal Geophysical Research, 99(C1), 843–864.CrossRefGoogle Scholar
  18. 18.
    Padman, L., & Erofeeva, S. (2004). A barotropic inverse tidal model for the Arctic Ocean. Geophysical Reseach Letters, 31, L02303.Google Scholar
  19. 19.
    Vlasenko, V., Stashchuk, N., & Hutter, K. (2005). Baroclinic tides: Theoretical modeling and observational evidence. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  20. 20.
    Baines, P. G. (1995). Topographic effects in stratified flows. Cambridge: Cambridge University Press.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Oxana E. Kurkina
    • 1
  • Tatiana G. Talipova
    • 2
  • Efim N. Pelinovsky
    • 2
  • Andrey A. Kurkin
    • 1
  1. 1.Nizhny Novgorod State Technical University n.a. R.E.AlekseevNizhny NovgorodRussia
  2. 2.Federal Research Center Institute of Applied Physics of the Russian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations