Skip to main content

Numerical Modeling of Internal Wave Generation at High Latitudes

  • Chapter
  • First Online:
The Ocean in Motion

Part of the book series: Springer Oceanography ((SPRINGEROCEAN))

  • 1487 Accesses

Abstract

This contribution is focused on the semidiurnal internal tide in the Barents Sea generated north of the critical latitude (74.5° N). The study is based on the numerical modeling of internal wave generation and dynamics using of the Euler 2D equations for incompressible stratified fluid. The study site is located between Svalbard and the Franz-Victoria Trough. A Section 350 km long is chosen for the analysis in this basin. The bottom topography in the region is quite steep; four underwater hills with heights about 150–230 m over the background depth of about 350 m are located here. Calculations confirm the observation data in the vicinity of this region. Intense nonlinear internal waves with amplitudes up to 50 m and lengths of about 6–12 km are generated in this region of the Arctic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. LeBlond, P. H., & Mysak, L. A. (1978). Waves in the ocean. Amsterdam: Elsevier.

    Google Scholar 

  2. D’Asaro, E. A., & Morison, J. H. (1992). Internal waves and mixing in the Arctic Ocean. Deep-Sea Research, 39(2), S459–S484. https://doi.org/10.1016/s0198-0149(06)80016-6.

    Article  Google Scholar 

  3. Guthrie, J. D., Morison, J. H., & Fer, I. (2013). Revisiting internal waves and mixing in the Arctic Ocean. Journal of Geophysical Research: Oceans, 118(8), 3966–3977. https://doi.org/10.1002/jgrc.20294.

    Google Scholar 

  4. Pisarev, S. V. (1995). Internal waves measurements with distributed temperature sensors near Arctic Ocean continental shelf margin. In Challenges of Our Changing Global Environment, Conference Proceedings, OCEANS’95 MTS/IEEE. https://doi.org/10.1109/oceans.1995.528542.

  5. Pisarev, S. V. (1996). Low-frequency internal waves near the shelf edge of the Arctic Basin. Oceanology, 36, 771–778.

    Google Scholar 

  6. Støylen, E., & Fer, I. (2014). Tidally induced internal motion in an Arctic fjord. Nonlinear Processes in Geophysics, 21(1), 87–100. https://doi.org/10.5194/npg-21-87-2014.

    Article  Google Scholar 

  7. Marchenko, A. V., Morozov, E. G., Muzylev, S. V., & Shestov, A. S. (2010). Interaction of short internal waves with the ice cover in an Arctic fjord. Oceanology, 50(1), 18–27. https://doi.org/10.1134/s0001437010010029.

    Article  Google Scholar 

  8. Morozov, E. G., Paka, V. T., & Bakhanov, V. V. (2008). Strong internal tides in the Kara Gates Strait. Geophysical Research Letters, 35, L16603. https://doi.org/10.1029/2008GL033804.

    Article  Google Scholar 

  9. Morozov, E. G., & Pisarev, S. V. (2002). Internal tides at the arctic latitudes (numerical experiments). Oceanology, 42(2), 153–161.

    Google Scholar 

  10. Morozov, E. G., Parrilla-Barrera, G., Velarde, M. G., & Scherbinin, A. D. (2003). The Straits of Gibraltar and Kara gates: A comparison of internal tides. Oceanologica Acta, 26(3), 231–241.

    Article  Google Scholar 

  11. Morozov, E. G., & Paka, V. T. (2010). Internal waves in a high latitude region. Oceanology, 50(5), 668–674.

    Article  Google Scholar 

  12. Morozov, E. G., & Marchenko, A. V. (2012). Short-period internal waves in an Arctic fjord (Spitsbergen). Izvestiya, Atmospheric and Oceanic Physics, 48(4), 401–408. https://doi.org/10.1134/s0001433812040123.

    Article  Google Scholar 

  13. Nakamura, T., Awaji, T., Hatayama, T., Akimoto, K., Takizawa, T., Koho, T., et al. (2000). The generation of large-amplitude unsteady lee waves by subinertial tidal flow: A possible vertical mixing mechanism in the Kuril Straits. Journal of Physical Oceanography, 30, 1601–1621.

    Article  Google Scholar 

  14. Alford, M. H., Peacock, T., MacKinnon, J. A., Nash, J. D., Buijsman, M. C., Centuroni, L. R., et al. (2015). The formation and fate of internal waves in the South China Sea. Nature, 521(7550), 65–69. https://doi.org/10.1038/nature14399.

  15. Vlasenko, V., Stashchuk, N., Hutter, K., & Sabinin, K. (2003). Nonlinear internal waves forced by tides near the critical latitude. Deep-Sea Research, 50(1), 317–338.

    Article  Google Scholar 

  16. Kurkina, O., & Talipova, T. (2011). Huge internal waves in the vicinity of the Spitsbergen Island (Barents Sea). Natural Hazards and Earth Systems Sciences, 11, 981–986. https://doi.org/10.5194/nhess-11-981-2011.

    Article  Google Scholar 

  17. Lamb, K. (1994). Numerical experiments of internal wave generation by strong tidal flow across a finite amplitude bank edge. Journal Geophysical Research, 99(C1), 843–864.

    Article  Google Scholar 

  18. Padman, L., & Erofeeva, S. (2004). A barotropic inverse tidal model for the Arctic Ocean. Geophysical Reseach Letters, 31, L02303.

    Google Scholar 

  19. Vlasenko, V., Stashchuk, N., & Hutter, K. (2005). Baroclinic tides: Theoretical modeling and observational evidence. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  20. Baines, P. G. (1995). Topographic effects in stratified flows. Cambridge: Cambridge University Press.

    Google Scholar 

Download references

Acknowledgements

This study was initiated in the framework of the state task programme in the sphere of scientific activity of the Ministry of Education and Science of the Russian Federation (projects No. 5.4568.2017/6.7 and No. 5.1246.2017/4.6) and financially supported by this programme, grant of the President of the Russian Federation (NSh-2685.2018.5) and Russian Foundation for Basic Research (grant No. 16-05-00049).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oxana E. Kurkina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kurkina, O.E., Talipova, T.G., Pelinovsky, E.N., Kurkin, A.A. (2018). Numerical Modeling of Internal Wave Generation at High Latitudes. In: Velarde, M., Tarakanov, R., Marchenko, A. (eds) The Ocean in Motion. Springer Oceanography. Springer, Cham. https://doi.org/10.1007/978-3-319-71934-4_36

Download citation

Publish with us

Policies and ethics