Arctic Ocean Modeling: The Consistent Physics on the Path to the High Spatial Resolution

  • Nikolay G. Iakovlev
Part of the Springer Oceanography book series (SPRINGEROCEAN)


Modern numerical models of the Arctic Ocean (AO) exhibit the great progress partly thanks to the fine horizontal resolution, which helps to resolve many of the relevant processes explicitly. Nevertheless, some of the AO features are still modeled poorly by the models with a resolution of 5–10 km. It is anticipated, that the further increase in the horizontal resolution up to 100–1000 m will demand the understanding of the role of the AO specific processes. This paper is a brief review of some of such processes like mesoscale and submesoscale eddies and internal waves, and of the problems of their parameterization, caused by the closeness of their spatial scales. The internal waves and the internal wave-induced mixing are assumed to be the key processes to be taken into account to describe the AO cold halocline mixing properly.



The study was performed at the Institute of Numerical Mathematics, Russian Academy of Sciences and supported by the Russian Science Foundation, grant 14-27-00126.


  1. 1.
    Aksenov, Y., Karcher, M., Proshutinsky, A., Gerdes, R., de Cuevas, B., Golubeva, E., et al. (2016) Arctic pathways of Pacific Water: Arctic Ocean model intercomparison experiments. Journal of Geophysical Research Oceans, 121, 27–59.Google Scholar
  2. 2.
    Fer, I. (2014). Near-inertial mixing in the central Arctic Ocean. Journal of Physical Oceanography, 44, 2031–2049. Scholar
  3. 3.
    Fox-Kemper, B., Ferrari, R., & Hallberg, R. (2008). Parameterization of mixed layer eddies. Part I: Theory and diagnosis. Journal of Physical Oceanography, 38, 1145–1165.CrossRefGoogle Scholar
  4. 4.
    Gent, P. R., & McWilliams, J. C. (1990). Isopycnal mixing in ocean circulation models. Journal of Physical Oceanography, 20(1), 150–155.CrossRefGoogle Scholar
  5. 5.
    Hines, C. O. (1997). Doppler spread parameterization of gravity wave momentum deposition in the middle atmosphere. Part 2. Broad and quasimonochromatic spectra, and implementation. Journal of Atmospheric and Solar-Terrestrial Physics, 59, 387–400.CrossRefGoogle Scholar
  6. 6.
    Iakovlev, N. G. (2012). On the simulation of temperature and salinity fields in the Arctic Ocean. Izvestiya Atmospheric and Oceanic Physics, 48(1), 86–101. Scholar
  7. 7.
    Iakovlev, N. G., Volodin, E. M., & Gritsun, A. S. (2016). Simulation of the spatiotemporal variability of the World Ocean sea surface height by the INM climate models. Izvestiya Atmospheric and Oceanic Physics, 52(4), 376–385. Scholar
  8. 8.
    Large, W. G., McWilliams, J. C., & Doney, S. C. (1994). Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Reviews of Geophysics, 32, 363–403.CrossRefGoogle Scholar
  9. 9.
    LeBlond, P. H., & Mysak, L. A. (1978). Waves in the ocean (p. 602). Amsterdam: Elsevier Oceanographic Series, Elsevier Scientific Publishing Company.Google Scholar
  10. 10.
    Marshall, J., Hill, C., Perelman, L., Adcroft, A. Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. Journal of Geophysical Research, 102(C3), 5733–5752.Google Scholar
  11. 11.
    McPhee, M. G., & Kantha, L. H. (1989). Generation of internal waves by sea ice. Journal Geophysical Research, 94(C3), 3287–3302.CrossRefGoogle Scholar
  12. 12.
    McWilliams, J. C. (2016). Submesoscale currents in the ocean. Proceedings of the Royal Society of London A, 472, 20160117. Scholar
  13. 13.
    Morozov, E. G., & Pisarev, S. V. (2002). Internal tides at the Arctic latitudes (numerical experiments). Oceanology, 42(2), 153–161.Google Scholar
  14. 14.
    Morozov, E. G., & Paka, V. T. (2010). Internal waves in a high-latitude region. Oceanology, 50(5), 668–674. Scholar
  15. 15.
    Morozov, E. G. (1995). Semidiurnal internal wave global field. Deep-Sea Research, 42(1), 135–148. Scholar
  16. 16.
    Morozov, E. G., Paka, V. T., Bakhanov, V. V. (2008) Strong internal tides in the Kara Gates Strait. Geophysical Research Letters 35(16).
  17. 17.
    Morozov, E. G., & Marchenko, A. V. (2012). Short-period internal waves in an arctic Fjord (Spitsbergen). Izvestiya Atmospheric Oceanic Physics, 48(4), 401–408. Scholar
  18. 18.
    Morozov, E. G., Kozlov, I. E., Shchuka, S. A., & Frey, D. I. (2017). Internal tide in the Kara Gates Strait. Oceanology, 57(1), 8–18. Scholar
  19. 19.
    Morozov, E. G., Pisarev, S. V., Neiman, V. G., & Erofeeva, S. Y. (2003). Internal tidal waves in the Barents Sea. Doklady Earth Sciences, 393(8), 1124–1126.Google Scholar
  20. 20.
    Morozov, E. G., & Pisarev, S. V. (2003). Internal waves and polynya formation in the Laptev Sea. Doklady Earth Sciences, 398(7), 983–986.Google Scholar
  21. 21.
    Nurser, A. J. G., & Bacon, S. (2014). The Rossby radius in the Arctic Ocean. Ocean Science, 10, 967–975.CrossRefGoogle Scholar
  22. 22.
    Palmer, T. N., Shutts, G. J., & Swinbank, R. (1986). Alleviation of a systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity drag parameterization. Quarterly Journal of the Royal Meteorological Society, 112, 1001–1031.CrossRefGoogle Scholar
  23. 23.
    Proshutinsky, A., Steele, M., & Timmermans, M.-L. (2016). Forum for Arctic modeling and observational synthesis (FAMOS): past, current, and future activities. Journal of Geophysical Research Oceans, 121, 3803–3819. Scholar
  24. 24.
    Rudels, B., Jones, E. P., Anderson, L. G., Kattner, G. (1994) On the intermediate depth waters of the Arctic Ocean. In O. M. Johannessen, R. D. Muench, J. E. Overland (Eds.), The Polar Oceans and their role in shaping the global environment. Geophysical monograph. 85: 33–46.Google Scholar
  25. 25.
    Serreze, M. C., & Barry, R. G. (2011). Processes and impacts of Arctic amplification: a research synthesis. Global and Planetary Change, 77, 85–96.CrossRefGoogle Scholar
  26. 26.
    Timmermans, M.-L., Toole, J., Proshutinsky, A., Krishfield, R., & Plueddemann, A. (2008). Eddies in the Canada Basin, Arctic Ocean, observed from ice-tethered profilers. Journal of Physical Oceanography, 38, 133–145.CrossRefGoogle Scholar
  27. 27.
    Visbeck, M., Marshall, J., Haine, T., & Spall, M. (1997). Specification of eddy transfer coefficients in coarse resolution ocean circulation models. Journal of Physical Oceanography, 27, 381–402.CrossRefGoogle Scholar
  28. 28.
    Voltzinger, N. E., & Androsov, A. A. (2016). Nonhydrostatic dynamics of straits of the World Ocean. Fundamentalnaya i prikladnaya gidrofizika, 9(1), 26–40. (in Russian).Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Numerical Mathematics, Russian Academy of SciencesMoscowRussia

Personalised recommendations