Modeling Study of the Antarctic Circumpolar Current Variability Based on Argo Data

Chapter
Part of the Springer Oceanography book series (SPRINGEROCEAN)

Abstract

The Antarctic Circumpolar Current (ACC) variability is studied using the Argo-Based Model for Investigation of the Global Ocean (AMIGO) recently developed at the Shirshov Institute of Oceanology. A prominent feature of the method is the application of variational interpolation of irregularly located Argo measurements to a regular grid followed by model hydrodynamic adjustment of the obtained fields. Such an approach for the Argo data processing makes it possible to obtain a full set of oceanographic characteristics: temperature, salinity, and current velocity. The mean ACC transport over a period of 2005–2014 through the Drake Passage based on the AMIGO data is diagnosed as 162 ± 5 Sv. The transport through the African section south of Cape Town is 0.6 Sv higher due to the Pacific water flow to the Arctic Ocean in the Bering Strait, which then increases the transport in the Atlantic. In the Indian sector the mean ACC transport is increasing by 15.4 Sv to compensate the water flow from the Pacific to the Indian Ocean through the Indonesian Straits (Indonesian Throughflow). Thus, the resulting mean transport between Australia and Antarctica is calculated as 178 ± 6 Sv. These modeling results agree very well with the previous transports calculations based on direct velocity measurements.

Notes

Acknowledgements

This work was supported by the Russian Science Foundation (project no. 16-17-10149).

References

  1. 1.
    Antonov, J. I., Seidov, D., Boyer, T. P., et al. (2010). World Ocean Atlas 2009, Vol. 2: Salinity. In S. Levitus (Ed.), NOAA Atlas NESDIS 69 Ser. Washington, D.C.: US Government Printing Office.Google Scholar
  2. 2.
    Argo. (2000). Argo float data and metadata from Global Data Assembly Center (Argo GDAC). SEANOE. http://doi.org/10.17882/42182.
  3. 3.
    Cunningham, S. A., Alderson, S. G., King, B. A., & Brandon, M. A. (2003). Transport and variability of the Antarctic Circumpolar Current in Drake Passage. Journal Geophysical Research, 108(C5), 8084.  https://doi.org/10.1029/2001JC001147.CrossRefGoogle Scholar
  4. 4.
    Dee, D. P., Uppala, S. M., Simmons, A. J., et al. (2011). The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137, 553–597.CrossRefGoogle Scholar
  5. 5.
    Donohue, K. A., Tracey, K. L., Watts, D. R., et al. (2016). Mean Antarctic Circumpolar Current transport measured in Drake Passage. Geophysical Reseach Letters, 43, 11760–11767.  https://doi.org/10.1002/2016GL070319.CrossRefGoogle Scholar
  6. 6.
    Ducet, N., Le Traon, P. Y., & Reverdin, G. (2000). Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2. Journal Geophysical Research, 105(C8), 19477–19498.CrossRefGoogle Scholar
  7. 7.
    Gladyshev, S. V., Koshlyakov, M. N., & Tarakanov, R. Yu. (2008). Currents in the Drake Passage based on observations in 2007. Oceanology, 48(6), 759–770.Google Scholar
  8. 8.
    Ivanov, Yu. A, Lebedev, K. V., & Sarkisyan, A. S. (1997). Generalized hydrodynamic adjustment method (GHDAM). Izvestiya Atmospheric and Oceanic Physics, 33(6), 752–757.Google Scholar
  9. 9.
    Ivanov, Yu. A, & Lebedev, K. V. (2000). Integral average monthly characteristics of the World Ocean climate. Izvestiya Atmospheric and Oceanic Physics, 36(2), 244–252.Google Scholar
  10. 10.
    Koshlyakov, M. N., Gladyshev, S. V., Tarakanov, R. Yu., & Fedorov, D. A. (2011). Currents in the Western Drake Passage according to the observations in January of 2010. Oceanology, 51(2), 187–198.Google Scholar
  11. 11.
    Koshlyakov, M. N., Gladyshev, S. V., Tarakanov, R. Yu., & Fedorov, D. A. (2012). Currents in the Drake Passage based on the observations in November of 2010. Oceanology, 52(3), 299–308.Google Scholar
  12. 12.
    Koshlyakov, M. N., Gladyshev, S. V., Tarakanov, R. Yu., & Fedorov, D. A. (2013). Currents in the Drake Passage by the observations in October–November of 2011. Oceanology, 53(1), 1–12.Google Scholar
  13. 13.
    Kurnosova, M. O., & Lebedev, K. V. (2014). Study of transport variations in the Kuroshio extension system at 35° N, 147° E based on the data of Argo floats and satellite altimetry. Doklady Earth Science, 458(1), 1154–1157.CrossRefGoogle Scholar
  14. 14.
    Lebedev, K. V. (1999). Average annual climate of the ocean. Part 2: Integral characteristics of the World Ocean climate (mass, heat, and salt transports). Izvestiya Atmospheric and Oceanic Physics, 35(1), 87–96.Google Scholar
  15. 15.
    Lebedev, K. V. (2016). An argo-based model for investigation of the Global Ocean (AMIGO). Oceanology, 56(2), 172–181.CrossRefGoogle Scholar
  16. 16.
    Lebedev, K. V., DeCarlo, S., Hacker, P. W., et al. (2010). Argo Products at the Asia-Pacific Data-Research Center. Eos Trans. AGU, 91(26). Ocean Science Meeting Suppl., Abstract IT25A-01.Google Scholar
  17. 17.
    Lebedev, K. V., Sarkisyan, A. S., & Nikitin, O. P. (2016). Comparative analysis of the North Atlantic surface circulation reproduced by three different methods. Izvestiya Atmospheric and Oceanic Physics, 52(4), 410–417.CrossRefGoogle Scholar
  18. 18.
    Locarnini, R. A., Mishonov, A. V., Antonov, J. I., et al. (2010). World Ocean Atlas 2009, Vol. 1: Temperature. In S. Levitus (Ed.), NOAA Atlas NESDIS 68 Ser. Washington, D.C.: US Government Printing Office.Google Scholar
  19. 19.
    Morozov, E. G., Tarakanov, R. Yu., Ansorge, I., & Swart, S. (2014). Jets and Transport of the Antarctic Circumpolar Current in the Drake Passage. Fundamentalnaya i Prikladnaya Gidrofizika, 7(3), 23–28.Google Scholar
  20. 20.
    Roach, A. T., Aagaard, K., Pease, C. H., et al. (1995). Direct measurements of transport and water properties through the Bering Strait. Journal Geophysical Research, 100(C9), 18443–18457.CrossRefGoogle Scholar
  21. 21.
    Sarkisyan, A. S., Nikitin, O. P., & Lebedev, K. V. (2016). Physical characteristics of the Gulf Stream as an indicator of the quality of large-scale circulation modeling. Doklady Earth Science, 471(2), 1288–1291.CrossRefGoogle Scholar
  22. 22.
    Sprintall, J., Wijffels, S. E., Molcard, R., & Jaya, I. (2009). Direct estimates of the Indonesian through flow entering the Indian Ocean: 2004–2006. Journal Geophysical Research, 114, C07001.  https://doi.org/10.1029/2008JC005257.CrossRefGoogle Scholar
  23. 23.
    Whitworth, T. (1983). Monitoring the Transport of the Antarctic Circumpolar Current at Drake Passage. Journal of Physical Oceanography, 13(11), 2045–2057Google Scholar
  24. 24.
    Whitworth, T., & Peterson, R. G. (1985). Volume transport of the Antarctic circumpolar current from bottom pressure measurements. Journal of Physical Oceanography, 15(6), 810–816.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Shirshov Institute of Oceanology, Russian Academy of SciencesMoscowRussia

Personalised recommendations