Advertisement

Bottom Water Flows in the Vema Channel and over the Santos Plateau Based on the Field and Numerical Experiments

  • Dmitry I. Frey
  • Vladimir V. Fomin
  • Roman Yu. Tarakanov
  • Nikolay A. Diansky
  • Nikolay I. Makarenko
Chapter
Part of the Springer Oceanography book series (SPRINGEROCEAN)

Abstract

The properties of Antarctic Bottom Water flows in the Southwest Atlantic were studied on the basis of hydrographic measurements and numerical modeling of the oceanic circulation. The CTD and LADCP profiles in the region of the Vema Channel and Santos Plateau were measured onboard the R/V “Akademik Sergey Vavilov”. Hydrographic observations at several locations over the Santos Plateau were carried out for the first time. The numerical simulation was performed using the Institute of Numerical Mathematics Ocean Model (INMOM). The observations of velocities were used for verification of the numerical model. The simulated three-dimensional velocity fields with high spatial resolution in the lower layer allow us to study the bottom currents over the entire length of the Vema Channel.

Notes

Acknowledgments

The work has been supported by the Russian Foundation for Basic Research grants 15-05-07539, 15-01-03942, 17-08-00085 (field studies); Russian Science Foundation project 16-17-10149 (data analysis).

References

  1. 1.
    Anisimov, M. V., & Diansky, N. A. (2008). Physical mechanism of the westward drift of the frontal current rings in the ocean. Oceanology, 48(3), 321–327.CrossRefGoogle Scholar
  2. 2.
    Antonov, J. I., Seidov, D., Boyer, T. P., et al. (2010). World Ocean Atlas 2009 Vol. 2: Salinity. In S. Levitus (Ed.), NOAA Atlas NESDIS 69 (p. 184). Washington, D.C.: U.S. Government Printing Office.Google Scholar
  3. 3.
    Danabasoglu, G., Yeager, S. G., Bailey, D., et al. (2014). North Atlantic simulations in coordinated ocean-ice reference experiments phase II (CORE-II) Part I: Mean states. Ocean Modelling, 73, 76–107.CrossRefGoogle Scholar
  4. 4.
    Diansky, N. A., Bagno, A. V., & Zalesny, V. B. (2002). Sigma model of global ocean circulation and its sensitivity to variations in wind stress. Izvestiya Atmospheric and Oceanic Physics, 38(4), 537–556.Google Scholar
  5. 5.
    Egbert, G. D., & Erofeeva, S. (2002). Efficient inverse modeling of barotropic ocean tides. Journal of Atmospheric and Oceanic Technology, 19, 183–204.CrossRefGoogle Scholar
  6. 6.
    Griffies, S., Gnanadesikan, A., Dixon, K. W., et al. (2005). Formulation of an ocean model for global climate simulations. Ocean Science, 1, 45–79.CrossRefGoogle Scholar
  7. 7.
    Gamboa, L. A. P., Buffler, R. T., & Barker, P. F. (1983). Seismic stratigraphy and geologic history of the Rio Grande gap and Southern Brazil Basin. In Initial Reports of the DSDP (Vol. 72, pp. 481–498). US Government Printing Office.Google Scholar
  8. 8.
    Hogg, N., Siedler, G., & Zenk, W. (1999). Circulation and variability at the southern boundary of the Brazil Basin. Journal of Physical Oceanography, 29, 145–157.CrossRefGoogle Scholar
  9. 9.
    Jungclaus, J., & Vanicek, M. (1999). Frictionally modified flow in a deep ocean channel: Application to the Vema Channel. Journal Geophysical Research, 104(C9), 21123–21136.CrossRefGoogle Scholar
  10. 10.
    Klinck, J. M. (1995). Thermohaline structure of an eddy-resolving North-Atlantic model: The influence of boundary conditions. Journal of Physical Oceanography, 25, 1174–1196.CrossRefGoogle Scholar
  11. 11.
    Large, W., & Yeager, S. (2009). The global climatology of an interannually varying air–sea flux data set. Climate Dynamics, 33, 341–364.CrossRefGoogle Scholar
  12. 12.
    Locarnini, R. A., Mishonov, A. V., Antonov J. I., et al. (2010). World Ocean Atlas 2009. Vol. 1: Temperature. In S. Levitus (Ed.), NOAA Atlas NESDIS 68, (p. 182). Washington, D.C.: U.S. Government Printing Office.Google Scholar
  13. 13.
    McDonagh, E. L., Arhan, M., & Heywood, K. J. (2002). On the circulation of bottom water in the region of the Vema Channel. Deep Sea Research, 49, 1119–1139.CrossRefGoogle Scholar
  14. 14.
    Morozov, E. G., Demidov, A. N., & Tarakanov, R Yu. (2008). Transport of Antarctic waters in the deep channels of the Atlantic Ocean. Doklady Earth Sciences, 423(8), 1286–1289.CrossRefGoogle Scholar
  15. 15.
    Morozov, E. G., Demidov, A. N., Tarakanov, R. Y., & Zenk, W. (2010). Abyssal channels in the Atlantic Ocean: Water structure and flows (p. 266). Dordrecht: Springer.CrossRefGoogle Scholar
  16. 16.
    Morozov, E. G., & Tarakanov, R. Y. (2014). The flow of Antarctic Bottom Water from the Vema Channel to the Brazil Basin. Doklady Earth Sciences, 456(1), 598–601.CrossRefGoogle Scholar
  17. 17.
    Orsi, A. H., Johnsson, G. C., & Bullister, J. L. (1999). Circulation, mixing, and production of Antarctic Bottom Water. Progress in Oceanography, 43, 55–109.CrossRefGoogle Scholar
  18. 18.
    Speer, K. G., & Zenk, W. (1993). The flow of Antarctic Bottom Water into the Brazil Basin. Journal of Physical Oceanography, 23, 2667–2682.CrossRefGoogle Scholar
  19. 19.
    Tarakanov, R. Y., & Morozov, E. G. (2015). Flow of Antarctic Bottom Water at the output of the Vema Channel. Oceanology, 55(2), 153–161.CrossRefGoogle Scholar
  20. 20.
    Visbeck, M. (2002). Deep velocity profiling using lowered acoustic doppler current profiler: bottom track and inverse solution. Journal of Atmospheric and Oceanic Technology, 19, 794–807.CrossRefGoogle Scholar
  21. 21.
    Wüst, G. (1936). Schichtung und Zirkulation des Atlantischen Ozeans. In A. Defant (Ed.), Wissenschaftliche Ergebnisse, Deutsche Atlantische Expedition auf dem Forschungs und Vermessungsschiff “Meteor” 1925–1927 (Vol. 6, no. 1). Berlin: Walter de Gruyter & Co.Google Scholar
  22. 22.
    Zenk, W., Speer, K. G., & Hogg, N. G. (1993). Bathymetry at the Vema Sill. Deep-Sea Research, 40, 1925–1933.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Dmitry I. Frey
    • 1
  • Vladimir V. Fomin
    • 2
  • Roman Yu. Tarakanov
    • 1
  • Nikolay A. Diansky
    • 2
    • 3
    • 4
  • Nikolay I. Makarenko
    • 5
  1. 1.Russian Academy of SciencesShirshov Institute of OceanologyMoscowRussia
  2. 2.Zubov State Oceanographic InstituteMoscowRussia
  3. 3.Lomonosov Moscow State UniversityMoscowRussia
  4. 4.Russian Academy of SciencesInstitute of Numerical MathematicsMoscowRussia
  5. 5.Lavrent’ev Institute of HydrodynamicsNovosibirskRussia

Personalised recommendations