Skip to main content

Bottom Water Flows in the Vema Channel and over the Santos Plateau Based on the Field and Numerical Experiments

  • Chapter
  • First Online:
The Ocean in Motion

Part of the book series: Springer Oceanography ((SPRINGEROCEAN))

Abstract

The properties of Antarctic Bottom Water flows in the Southwest Atlantic were studied on the basis of hydrographic measurements and numerical modeling of the oceanic circulation. The CTD and LADCP profiles in the region of the Vema Channel and Santos Plateau were measured onboard the R/V “Akademik Sergey Vavilov”. Hydrographic observations at several locations over the Santos Plateau were carried out for the first time. The numerical simulation was performed using the Institute of Numerical Mathematics Ocean Model (INMOM). The observations of velocities were used for verification of the numerical model. The simulated three-dimensional velocity fields with high spatial resolution in the lower layer allow us to study the bottom currents over the entire length of the Vema Channel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anisimov, M. V., & Diansky, N. A. (2008). Physical mechanism of the westward drift of the frontal current rings in the ocean. Oceanology, 48(3), 321–327.

    Article  Google Scholar 

  2. Antonov, J. I., Seidov, D., Boyer, T. P., et al. (2010). World Ocean Atlas 2009 Vol. 2: Salinity. In S. Levitus (Ed.), NOAA Atlas NESDIS 69 (p. 184). Washington, D.C.: U.S. Government Printing Office.

    Google Scholar 

  3. Danabasoglu, G., Yeager, S. G., Bailey, D., et al. (2014). North Atlantic simulations in coordinated ocean-ice reference experiments phase II (CORE-II) Part I: Mean states. Ocean Modelling, 73, 76–107.

    Article  Google Scholar 

  4. Diansky, N. A., Bagno, A. V., & Zalesny, V. B. (2002). Sigma model of global ocean circulation and its sensitivity to variations in wind stress. Izvestiya Atmospheric and Oceanic Physics, 38(4), 537–556.

    Google Scholar 

  5. Egbert, G. D., & Erofeeva, S. (2002). Efficient inverse modeling of barotropic ocean tides. Journal of Atmospheric and Oceanic Technology, 19, 183–204.

    Article  Google Scholar 

  6. Griffies, S., Gnanadesikan, A., Dixon, K. W., et al. (2005). Formulation of an ocean model for global climate simulations. Ocean Science, 1, 45–79.

    Article  Google Scholar 

  7. Gamboa, L. A. P., Buffler, R. T., & Barker, P. F. (1983). Seismic stratigraphy and geologic history of the Rio Grande gap and Southern Brazil Basin. In Initial Reports of the DSDP (Vol. 72, pp. 481–498). US Government Printing Office.

    Google Scholar 

  8. Hogg, N., Siedler, G., & Zenk, W. (1999). Circulation and variability at the southern boundary of the Brazil Basin. Journal of Physical Oceanography, 29, 145–157.

    Article  Google Scholar 

  9. Jungclaus, J., & Vanicek, M. (1999). Frictionally modified flow in a deep ocean channel: Application to the Vema Channel. Journal Geophysical Research, 104(C9), 21123–21136.

    Article  Google Scholar 

  10. Klinck, J. M. (1995). Thermohaline structure of an eddy-resolving North-Atlantic model: The influence of boundary conditions. Journal of Physical Oceanography, 25, 1174–1196.

    Article  Google Scholar 

  11. Large, W., & Yeager, S. (2009). The global climatology of an interannually varying air–sea flux data set. Climate Dynamics, 33, 341–364.

    Article  Google Scholar 

  12. Locarnini, R. A., Mishonov, A. V., Antonov J. I., et al. (2010). World Ocean Atlas 2009. Vol. 1: Temperature. In S. Levitus (Ed.), NOAA Atlas NESDIS 68, (p. 182). Washington, D.C.: U.S. Government Printing Office.

    Google Scholar 

  13. McDonagh, E. L., Arhan, M., & Heywood, K. J. (2002). On the circulation of bottom water in the region of the Vema Channel. Deep Sea Research, 49, 1119–1139.

    Article  Google Scholar 

  14. Morozov, E. G., Demidov, A. N., & Tarakanov, R Yu. (2008). Transport of Antarctic waters in the deep channels of the Atlantic Ocean. Doklady Earth Sciences, 423(8), 1286–1289.

    Article  Google Scholar 

  15. Morozov, E. G., Demidov, A. N., Tarakanov, R. Y., & Zenk, W. (2010). Abyssal channels in the Atlantic Ocean: Water structure and flows (p. 266). Dordrecht: Springer.

    Book  Google Scholar 

  16. Morozov, E. G., & Tarakanov, R. Y. (2014). The flow of Antarctic Bottom Water from the Vema Channel to the Brazil Basin. Doklady Earth Sciences, 456(1), 598–601.

    Article  Google Scholar 

  17. Orsi, A. H., Johnsson, G. C., & Bullister, J. L. (1999). Circulation, mixing, and production of Antarctic Bottom Water. Progress in Oceanography, 43, 55–109.

    Article  Google Scholar 

  18. Speer, K. G., & Zenk, W. (1993). The flow of Antarctic Bottom Water into the Brazil Basin. Journal of Physical Oceanography, 23, 2667–2682.

    Article  Google Scholar 

  19. Tarakanov, R. Y., & Morozov, E. G. (2015). Flow of Antarctic Bottom Water at the output of the Vema Channel. Oceanology, 55(2), 153–161.

    Article  Google Scholar 

  20. Visbeck, M. (2002). Deep velocity profiling using lowered acoustic doppler current profiler: bottom track and inverse solution. Journal of Atmospheric and Oceanic Technology, 19, 794–807.

    Article  Google Scholar 

  21. Wüst, G. (1936). Schichtung und Zirkulation des Atlantischen Ozeans. In A. Defant (Ed.), Wissenschaftliche Ergebnisse, Deutsche Atlantische Expedition auf dem Forschungs und Vermessungsschiff “Meteor” 1925–1927 (Vol. 6, no. 1). Berlin: Walter de Gruyter & Co.

    Google Scholar 

  22. Zenk, W., Speer, K. G., & Hogg, N. G. (1993). Bathymetry at the Vema Sill. Deep-Sea Research, 40, 1925–1933.

    Article  Google Scholar 

Download references

Acknowledgments

The work has been supported by the Russian Foundation for Basic Research grants 15-05-07539, 15-01-03942, 17-08-00085 (field studies); Russian Science Foundation project 16-17-10149 (data analysis).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry I. Frey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Frey, D.I., Fomin, V.V., Tarakanov, R.Y., Diansky, N.A., Makarenko, N.I. (2018). Bottom Water Flows in the Vema Channel and over the Santos Plateau Based on the Field and Numerical Experiments. In: Velarde, M., Tarakanov, R., Marchenko, A. (eds) The Ocean in Motion. Springer Oceanography. Springer, Cham. https://doi.org/10.1007/978-3-319-71934-4_29

Download citation

Publish with us

Policies and ethics