Advertisement

Numerical Realization of Hybrid Data Assimilation Algorithm in Ensemble Experiments with the MPIESM Coupled Model

  • Konstantin P. Belyaev
  • Ingo Kirchner
  • Andrey A. Kuleshov
  • Natalia P. Tuchkova
Chapter
Part of the Springer Oceanography book series (SPRINGEROCEAN)

Abstract

Original data assimilation method is considered. This method is applied in conjunction with the coupled Max Planck Institute Earth System Model (MPIESM). The assimilation block and the interface with the MPIESM are realized on the “Lomonosov” supercomputer at the Lomonosov Moscow State University. Several experiments with and without assimilation of the sea level data and temperature-salinity profiles over the Equatorial Atlantic are conducted. The results of these experiments have been analyzed and discussed. In particular, it is shown that the ice concentration in Arctic zone of Russia fits better to the observations then in the reference experiments without assimilation.

Notes

Acknowledgements

This work was supported by the Russian Science Foundation: numerical calculations were supported by project 14-11-00434.

References

  1. 1.
    Belyaev, K., Meyers, S., & O’Brien, J. J. (2000). Application of the Fokker-Planck equation to data assimilation into hydrodynamical models. Journal of Mathematical Sciences, 99(4), 1393–1402.CrossRefGoogle Scholar
  2. 2.
    Belyaev, K. P., Kuleshov, A. A., Tuchkova, N. P., & Tanajura, C. A. S. (2016). A correction method for dynamic model calculations using observational data and its application in oceanography. Mathematical Models and Computer Simulations, 8(4), 391–400.CrossRefGoogle Scholar
  3. 3.
    Belyaev, K. P., Kuleshov, A. A., & Tanajura, C. A. S. (2016). An application of a data assimilation method based on the diffusion stochastic process theory using altimetry data in Atlantic. Russian Journal of Numerical Analysis and Mathematical Modelling, 31(3), 137–148.CrossRefGoogle Scholar
  4. 4.
    Bryan, K. (1969). A numerical method for the study of the World Ocean. Journal of Computational Physics, 3, 347–376.CrossRefGoogle Scholar
  5. 5.
    Evensen, G. (2003). The ensemble Kalman filter: Theoretical formulation and practical implementation. Ocean Dynamics, 53, 343–367.CrossRefGoogle Scholar
  6. 6.
    Gandin, L. S. (1963). An objective analysis of hydrometeorologycal fields. Leningrad: Gidrometizdat (in Russian).Google Scholar
  7. 7.
    Ghil, M., & Malnotte-Rizzoli, P. (1991). Data assimilation in meteorology and oceanography. Advances in Geophysics, 33, 141–266.CrossRefGoogle Scholar
  8. 8.
    Haak, H. (2004). Simulation of low-frequency climate variability in the north atlantic ocean and the arctic, V.1. Max Planck Institute for Meteorology.Google Scholar
  9. 9.
    Kirtman, B., & Shukla, J. (2002). Interactive coupled ensemble: A new coupling strategy for CGCMs. Geophysics Research Letters, 29(10), 245–272.CrossRefGoogle Scholar
  10. 10.
    Marchuk, G. I., & Sarkisayn, A. S. (1988). Mathematical modeling of ocean circulation. Moscow, Nauka (in Russian).Google Scholar
  11. 11.
    Moiseev, N. N., Alexandrov, V. V., & Tarko, A. M. (1985). A man and biosphere. In The system experiments with models. Moscow, Nauka (in Russian).Google Scholar
  12. 12.
    Tanajura, C. A. S., & Belyaev, K. (2009). A sequential data assimilation method based on the properties of diffusion-type process. Applied Mathematical Modelling, 33, 2165–2174.CrossRefGoogle Scholar
  13. 13.
    Wetzel, P., Haak, H., Jungclaus, J., & Maier-Reimer, E. (2004). The Max-Planck-institute global ocean/sea-ice model. Model MPI-OM Technical report. http://www.mpimet.mpg.de/fileadmin/models/.
  14. 14.
    Xie, J., Counillon, F., Zhu, J., & Bertino, L. (2011). An eddy-resolving tidal -driven model in China south sea assimilation along track satellite data using EnOI. Ocean Science, 7, 609–627.CrossRefGoogle Scholar
  15. 15.
    Zalesny, V. B., & Rusakov, A. S. (2007). Numerical algorithm of data assimilation based on splitting and adjoint equation methods. Russian Journal of Numerical Analysis and Mathematical Modelling, 22(2), 199–219.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Konstantin P. Belyaev
    • 1
    • 4
  • Ingo Kirchner
    • 2
  • Andrey A. Kuleshov
    • 3
  • Natalia P. Tuchkova
    • 4
  1. 1.Shirshov Institute of Oceanology, Russian Academy of SciencesMoscowRussia
  2. 2.Institute of Meteorology, Free University of BerlinBerlinGermany
  3. 3.Keldysh Institute of Applied Mathematics, Russian Academy of SciencesMoscowRussia
  4. 4.Federal Research Center “Computer Science and Control”, Russian Academy of SciencesMoscowRussia

Personalised recommendations